Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077978

RESUMO

Ocean acidification and warming are two of the most important threats to the existence of marine organisms and are predicted to co-occur in oceans. The present work evaluated the effects of acidification (AC: 24 ± 0.1 °C and 900 µatm CO2), warming (WC: 30 ± 0.1 °C and 450 µatm CO2), and their combination (CC: 30 ± 0.1 °C and 900 µatm CO2) on the sea anemone, Heteractis crispa, from the aspects of photosynthetic apparatus (maximum quantum yield of photosystem II (PS II), chlorophyll level, and Symbiodiniaceae density) and sterol metabolism (cholesterol content and total sterol content). In a 15-day experiment, acidification alone had no apparent effect on the photosynthetic apparatus, but did affect sterol levels. Upregulation of their chlorophyll level is an important strategy for symbionts to adapt to high partial pressure of CO2 (pCO2). However, after warming stress, the benefits of high pCO2 had little effect on stress tolerance in H. crispa. Indeed, thermal stress was the dominant driver of the deteriorating health of H. crispa. Cholesterol and total sterol contents were significantly affected by all three stress conditions, although there was no significant change in the AC group on day 3. Thus, cholesterol or sterol levels could be used as important indicators to evaluate the impact of climate change on cnidarians. Our findings suggest that H. crispa might be relatively insensitive to the impact of ocean acidification, whereas increased temperature in the future ocean might impair viability of H. crispa.

2.
Animals (Basel) ; 12(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139220

RESUMO

The mud snail Cipangopaludina cathayensis is a widely distributed species in China. Particularly in Guangxi province, mud snail farming contributes significantly to the economic development. However, global warming in recent decades poses a serious threat to global aquaculture production. The rising water temperature is harmful to aquatic animals. The present study explored the effects of high temperature on the intestinal microbiota of C. cathayensis. Snail intestinal samples were collected from the control and high-temperature groups on days 3 and 7 to determine the gut microbiota composition and diversity. Gut bacterial community composition was investigated using high-throughput sequencing of the V3-V4 region of bacterial 16S rRNA genes. Our results suggested that thermal stress altered the gut microbiome structure of C. cathayensis. At the phylum level, Proteobacteria, Bacteroidetes, and Firmicutes were dominant in C. cathayensis gut microbiota. The T2 treatment (32 ± 1 °C, day 7) significantly decreased the relative abundance of Firmicutes, Actinobacteria, and Deinococcus-Thermus. In T2, the abundance of several genera of putatively beneficial bacteria (Pseudomonas, Aeromonas, Rhodobacter, and Bacteroides) decreased, whereas the abundance of Halomonas-a pathogenic bacterial genus-increased. The functional prediction results indicated that T2 treatment inhibited some carbohydrate metabolism pathways and induced certain disease-related pathways (e.g., those related to systemic lupus erythematosus, Vibrio cholerae infection, hypertrophic cardiomyopathy, and shigellosis). Thus, high temperature profoundly affected the community structure and function of C. cathayensis gut microbiota. The results provide insights into the mechanisms associated with response of C. cathayensis intestinal microbiota to global warming.

3.
Front Microbiol ; 13: 984757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003941

RESUMO

As one of the most environmentally toxic heavy metals, cadmium (Cd) has attracted the attention of researchers globally. In particular, Guangxi, a province in southwestern China, has been subjected to severe Cd pollution due to geogenic processes and anthropogenic activities. Cd can be accumulated in aquatic animals and transferred to the human body through the food chain, with potential health risks. The aim of the present study was to explore the effects of waterborne Cd exposure (0.5 mg/L and 1.5 mg/L) on the intestinal microbiota of mudsnail, Cipangopaludina cathayensis, which is favored by farmers and consumers in Guangxi. Gut bacterial community composition was investigated using high-throughput sequencing of the V3-V4 segment of the bacterial 16S rRNA gene. Our results indicated that C. cathayensis could tolerate low Cd (0.5 mg/L) stress, while Cd exposure at high doses (1.5 mg/L) exerted considerable effects on microbiota composition. At the phylum level, Proteobacteria, Bacteroidetes, and Firmicutes were the dominant phyla in the mudsnail gut microbiota. The relative abundances of Bacteroidetes increased significantly under high Cd exposure (H14) (p < 0.01), with no significant change in the low Cd exposure (L14) treatment. The dominant genera with significant differences in relative abundance were Pseudomonas, Cloacibacterium, Acinetobacter, Dechloromonas, and Rhodobacter. In addition, Cd exposure could significantly alter the pathways associated with metabolism, cellular processes, environmental information processing, genetic information processing, human diseases, and organismal systems. Notably, compared to the L14 treatment, some disease-related pathways were enriched, while some xenobiotic and organic compound biodegradation and metabolism pathways were significantly inhibited in the H14 group. Overall, Cd exposure profoundly influenced community structure and function of gut microbiota, which may in turn influence C. cathayensis gut homeostasis and health.

4.
Front Plant Sci ; 8: 718, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579991

RESUMO

Camellia flavida is an endangered species of yellow camellia growing in limestone mountains in southwest China. The current classification of C. flavida into two varieties, var. flavida and var. patens, is controversial. We conducted a genetic analysis of C. flavida to determine its taxonomic structure. A total of 188 individual plants from 20 populations across the entire distribution range in southwest China were analyzed using two DNA fragments: a chloroplast DNA fragment from the small single copy region and a single-copy nuclear gene called phenylalanine ammonia-lyase (PAL). Sequences from both chloroplast and nuclear DNA were highly diverse; with high levels of genetic differentiation and restricted gene flow. This result can be attributed to the high habitat heterogeneity in limestone karst, which isolates C. flavida populations from each other. Our nuclear DNA results demonstrate that there are three differentiated groups within C. flavida: var. flavida 1, var. flavida 2, and var. patens. These genetic groupings are consistent with the morphological characteristics of the plants. We suggest that the samples included in this study constitute three taxa and the var. flavida 2 group is the genuine C. flavida. The three groups should be recognized as three management units for conservation concerns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...