Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(21): 25186-25192, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34014633

RESUMO

This work describes the construction of a novel planar chiral [2.2]paracyclophane-based thermally activated delayed fluorescence (TADF)-active molecule with circularly polarized luminescence (CPL). The combination of the bulky planar chiral phenoxazinephane (PXZp) donor based [2.2]paracyclophane and triazine acceptor enables the highly efficient luminescence performances and excellent CPL properties. The enantiomers exhibit excellent TADF activities, the energy difference (ΔEST) between singlet and triplet of the molecule is only 0.03 eV. Notably, through solution-process, a yellow CP-OLEDs based on the molecule as the emitting layers displays high maximum brightness (Lmax) up to 34 293 cd m-2, maximum external quantum efficiency (EQEmax) up to 7.8% and remarkable CP-EL signal with gEL factor up to 4.6 × 10-3.

2.
Dalton Trans ; 48(43): 16289-16297, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31621733

RESUMO

A series of charge-neutral cyclometalated iridium(iii) complexes (1-3 and 5-7) containing triptycene-substituted ligands (tbt and tpbi) and two parent complexes (4 and 8) were synthesized and characterized. The crystal structures indicated that π-π stacking interactions existed in ligand tbtH, but not in complex 6. However, a large intramolecular repulsion was found in complex 6. These triptycene-based complexes exhibited good thermal stability, which was higher compared with that of the parent complexes. These complexes showed green to yellow emission with peaks that ranged from 503 to 563 nm. The introduction of the rigid non-conjugate triptycene skeleton caused a slight emission red shift (<25 nm), but a significant increase in the PLQYs (>47%) was observed. The electroluminescent devices employing 2 and 6 as phosphors displayed impressive performance improvements and low efficiency roll-off because of the higher PLQYs and HOMO levels of these triptycene-based complexes. The maximum current and external quantum efficiencies of the devices based on complexes 2 and 6 were 41.7 cd A-1, 11.9% and 41.2 cd A-1, 12.6%, respectively, which were about 31% higher than that of the devices based on the parent complexes 4 and 8. This work provides a novel approach to develop highly efficient phosphors with a triptycene skeleton.

3.
Phys Chem Chem Phys ; 17(14): 8860-9, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25742776

RESUMO

Low cost and high performance white polymer light-emitting diodes (PLEDs) are very important as solid-state lighting sources. In this research three commercially available phosphors were carefully chosen, bis[2-(4,6-difluorophenyl)pyridinato-N,C(2)](picolinate)iridium(III) (FIrpic), bis[2-(2-pyridinyl-N)phenyl-C](2,4-pentanedionato-O(2),O(4))iridium(III) [Ir(ppy)2(acac)], and bis(2-phenyl-benzothiazole-C(2),N)(acetylacetonate)iridium(III) [Ir(bt)2(acac)], plus a home-made red phosphor of tris[1-(2,6-dimethylphenoxy)-4-(4-chlorophenyl)phthalazine]iridium(III) [Ir(MPCPPZ)3], and their photophysical and morphological properties were systematically studied as well as their applications in single-emission layer white PLEDs comprising poly(N-vinylcarbazole) as host. Additionally, the electrochemical properties and energy level alignment, possible energy transfer process, and thin-film morphology were also addressed. The binary blue/orange complementary white PLEDs exhibit stable electroluminescence spectra, wide spectrum-covering region range from 380-780 nm, and high color rendering index (CRI) over 70 with Commission Internationale de l'Eclairage coordinates x,y (CIEx,y) of (0.388, 0.440), correlated color temperature (CCT) of around 4400, plus high efficiency of 25.5 cd A(-1). The optimized red-green-blue white PLEDs showed a satisfactory CRI of around 82.4, maximum current efficiency of 20.0 cd A(-1) and external quantum efficiency (EQE) of 10.8%, corresponding to a CCT of 3700-2800, which is a warm-white hue. At last, stable and high color quality, red-green-orange-blue four component white PLEDs, with a CRI of over 82, a high efficiency of 24.0 cd A(-1), EQE of 11.5%, and high brightness of 43,569.9 cd m(-2) have been obtained.

4.
Org Lett ; 17(6): 1413-6, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25723625

RESUMO

A novel bipolar oligomer (TPA-PO)3 was prepared as a host material for efficient blue phosphorescent organic light-emitting diodes (OLEDs). Through the C-9s of the fluorene units, three triphenylamine units attached to diphenylphosphine oxide are connected in series to form a macrocyclic structure. The solution-processed phosphorescent device based on FIrpic and (TPA-PO)3 achieved a maximum current efficiency of 19.4 cd A(-1) and a maximum luminance of 11,500 cd m(-2) with a relatively low efficiency roll-off.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...