Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 195(3): 2372-2388, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38620011

RESUMO

Zeaxanthin epoxidase (ZEP) is a key enzyme that catalyzes the conversion of zeaxanthin to violaxanthin in the carotenoid and abscisic acid (ABA) biosynthesis pathways. The rapeseed (Brassica napus) genome has 4 ZEP (BnaZEP) copies that are suspected to have undergone subfunctionalization, yet the 4 genes' underlying regulatory mechanisms remain unknown. Here, we genetically confirmed the functional divergence of the gene pairs BnaA09.ZEP/BnaC09.ZEP and BnaA07.ZEP/BnaC07.ZEP, which encode enzymes with tissue-specific roles in carotenoid and ABA biosynthesis in flowers and leaves, respectively. Molecular and transgenic experiments demonstrated that each BnaZEP pair is transcriptionally regulated via ABA-responsive element-binding factor 3 s (BnaABF3s) and BnaMYB44s as common and specific regulators, respectively. BnaABF3s directly bound to the promoters of all 4 BnaZEPs and activated their transcription, with overexpression of individual BnaABF3s inducing BnaZEP expression and ABA accumulation under drought stress. Conversely, loss of BnaABF3s function resulted in lower expression of several genes functioning in carotenoid and ABA metabolism and compromised drought tolerance. BnaMYB44s specifically targeted and repressed the expression of BnaA09.ZEP/BnaC09.ZEP but not BnaA07.ZEP/BnaC07.ZEP. Overexpression of BnaA07.MYB44 resulted in increased carotenoid content and an altered carotenoid profile in petals. Additionally, RNA-seq analysis indicated that BnaMYB44s functions as a repressor in phenylpropanoid and flavonoid biosynthesis. These findings provide clear evidence for the subfunctionalization of duplicated genes and contribute to our understanding of the complex regulatory network involved in carotenoid and ABA biosynthesis in B. napus.


Assuntos
Ácido Abscísico , Carotenoides , Regulação da Expressão Gênica de Plantas , Oxirredutases , Ácido Abscísico/metabolismo , Carotenoides/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/enzimologia , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Plant Sci ; 326: 111531, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343867

RESUMO

Plant architecture is a collection of genetically controlled crop productivity and adaptation. MicroRNAs (miRNAs) have been proved to function in various biological processes, but little is known about how miRNA regulates plant architecture in rapeseed (Brassica napus L.). In this study, four small RNA libraries and two degradome libraries from shoot apex of normal and rod-like plants were sequenced. A total of 639 miRNA precursors and 16 differentially expressed miRNAs were identified in this study. In addition, 322 targets were identified through degradome sequencing. Among them, 14 targets were further validated via RNA ligase-mediated 5' rapid amplification of cDNA ends. Transgenic approach showed that increased TCP4 activity in Arabidopsis resulted in premature onset of maturation and reduced plant size along with early flowering and shortened flowering time. miR319-OE lines in Brassica napus exhibited serrated leaves and abnormal development of shoot apical meristem (SAM), which led to the deformed growth of stem and reduced plant height. In conclusion, our study lays the foundation for elucidating miRNA regulate plant architecture and provides new insight into the miR319/TCP4 module regulates plant architecture in rapeseed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Brassica rapa , MicroRNAs , Brassica napus/fisiologia , Regulação da Expressão Gênica de Plantas , Brassica rapa/genética , Arabidopsis/genética , Arabidopsis/metabolismo , MicroRNAs/genética , RNA de Plantas/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética
3.
Front Plant Sci ; 13: 994616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119587

RESUMO

Inheritable albino mutants are excellent models for exploring the mechanism of chloroplast biogenesis and development. However, only a few non-lethal albino mutations have been reported to date in Brassica species. Here, we describe a resynthesized Brassica napus mutant, whose leaf, stem, and silique tissues showed an inheritable albino phenotype under field conditions after the bud stage but green phenotype in the greenhouse during the whole growing season, indicating that the albino phenotype depends on environmental conditions. Compared with the green leaves of the field-grown wild-type (GL) and greenhouse-grown mutant (WGL) plants, white leaves of the field-grown mutant (WL) showed significantly lower chlorophyll contents and structural defects in chloroplasts. Genetic analysis revealed that the albino phenotype of WL is recessive and is controlled by multiple genes. Bulk segregant analysis-sequencing (BSA-Seq) indicated that the candidate regions responsible for the albino phenotype spanned a total physical distance of approximately 49.68 Mb on chromosomes A03, A07, A08, C03, C04, C06, and C07. To gain insights into the molecular mechanisms that control chloroplast development in B. napus, we performed transcriptome (RNA-Seq) analysis of GL, WGL, and WL samples. GO and KEGG enrichment analyses suggested that differentially expressed genes (DEGs) associated with leaf color were significantly enriched in photosynthesis, ribosome biogenesis and chlorophyll metabolism. Further analysis indicated that DEGs involved in chloroplast development and chlorophyll metabolism were likely the main factors responsible for the albino phenotype in B. napus. A total of 59 DEGs were screened in the candidate regions, and four DEGs (BnaC03G0522600NO, BnaC07G0481600NO, BnaC07G0497800NO, and BnaA08G0016300NO) were identified as the most likely candidates responsible for the albino phenotype. Altogether, this study provides clues for elucidating the molecular mechanisms underlying chloroplast development in B. napus.

4.
J Exp Bot ; 73(19): 6630-6645, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35857343

RESUMO

The molecular mechanisms underlying anthocyanin-based flower coloration remain unknown in Brassica napus. To identify the key genes and metabolites associated with apricot and pink flower colors, metabolome, BSA-seq, and RNA-seq analyses were conducted on apricot-, pink-, yellow-, and white-flowered F2B. napus. Yellow carotenoids and red anthocyanins were abundant in apricot petals, while colorless carotenoids and red anthocyanins accumulated in pink petals. Most carotenoid genes were not differentially regulated between apricot and yellow or between pink and white petals. Three regulator genes, BnaMYBL2, BnaA07.PAP2, and BnaTT8, and structural genes in anthocyanin biosynthesis were dramatically enhanced in apricot and pink petals in comparison with yellow and white petals. Map-based cloning revealed that BnaA07.PAP2 is responsible for anthocyanin-based flower color and encodes a nucleus-localized protein predominantly expressed in apricot and pink flowers. Two insertions in the promoter region are responsible for the transcriptional activation of BnaA07.PAP2 in flowers. Introducing the BnaA07.PAP2In-184-317 allele broadly activated the expression of anthocyanin-related genes and promoted anthocyanin accumulation in flowers, yielding color change from yellow to apricot. These findings illustrate the genetic basis of anthocyanin-based flower coloration and provide a valuable genetic resource for breeding varieties with novel flower colors in B. napus.


Assuntos
Antocianinas , Brassica napus , Antocianinas/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Flores/metabolismo , Carotenoides/metabolismo , Pigmentação/genética , Cor
5.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269615

RESUMO

Plant architecture involves important agronomic traits affecting crop yield, resistance to lodging, and fitness for mechanical harvesting in Brassica napus. Breeding high-yield varieties with plant architecture suitable for mechanical harvesting is the main goal of rapeseed breeders. Here, we report an accession of B. napus (4942C-5), which has a dwarf and compact plant architecture in contrast to cultivated varieties. A BC8 population was constructed by crossing a normal plant architecture line, 8008, with the recurrent parent 4942C-5. To investigate the molecular mechanisms underlying plant architecture, we performed phytohormone profiling, bulk segregant analysis sequencing (BSA-Seq), and RNA sequencing (RNA-Seq) in BC8 plants with contrasting plant architecture. Genetic analysis indicated the plant architecture traits of 4942C-5 were recessive traits controlled by multiple genes. The content of auxin (IAA), gibberellin (GA), and abscisic acid (ABA) differed significantly between plants with contrasting plant architecture in the BC8 population. Based on BSA-Seq analysis, we identified five candidate intervals on chromosome A01, namely those of 0 to 6.33 Mb, 6.45 to 6.48 Mb, 6.51 to 6.53 Mb, 6.77 to 6.79 Mb, and 7 to 7.01 Mb regions. The RNA-Seq analysis revealed a total of 4378 differentially expressed genes (DEGs), of which 2801 were up-regulated and 1577 were down-regulated. There, further analysis showed that genes involved in plant hormone biosynthesis and signal transduction, cell structure, and the phenylpropanoid pathway might play a pivotal role in the morphogenesis of plant architecture. Association analysis of BSA-Seq and RNA-Seq suggested that seven DEGs involved in plant hormone signal transduction and a WUSCHEL-related homeobox (WOX) gene (BnaA01g01910D) might be candidate genes responsible for the dwarf and compact phenotype in 4942C-5. These findings provide a foundation for elucidating the mechanisms underlying rapeseed plant architecture and should contribute to breed new varieties suitable for mechanization.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , RNA-Seq , Análise de Sequência de RNA
6.
Plant J ; 104(4): 932-949, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32808386

RESUMO

Brassica napus is currently cultivated as an important ornamental crop in China. Flower color has attracted much attention in rapeseed genetics and breeding. Here, we characterize an orange-flowered mutant of B. napus that exhibits an altered carotenoid profile in its petals. As revealed by map-based cloning, the change in color from yellow to orange is attributed to the loss of BnaC09.ZEP (zeaxanthin epoxidase) and a 1695-bp deletion in BnaA09.ZEP. HPLC analysis, genetic complementation and CRISPR/Cas9 experiments demonstrated that BnaA09.ZEP and BnaC09.ZEP have similar functions, and the abolishment of both genes led to a substantial increase in lutein content and a sharp decline in violaxanthin content in petals but not leaves. BnaA09.ZEP and BnaC09.ZEP are predominantly expressed in floral tissues, whereas their homologs, BnaA07.ZEP and BnaC07.ZEP, mainly function in leaves, indicating redundancy and tissue-specific diversification of BnaZEP function. Transcriptome analysis in petals revealed differences in the expression of carotenoid and flavonoid biosynthesis-related genes between the mutant and its complementary lines. Flavonoid profiles in the petals of complementary lines were greatly altered compared to the mutant, indicating potential cross-talk between the regulatory networks underlying the carotenoid and flavonoid pathways. Additionally, our results indicate that there is functional compensation by BnaA07.ZEP and BnaC07.ZEP in the absence of BnaA09.ZEP and BnaC09.ZEP. Cloning and characterization of BnaZEPs provide insights into the molecular mechanisms underlying flower pigmentation in B. napus and would facilitate breeding of B. napus varieties with higher ornamental value.


Assuntos
Brassica napus/genética , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredutases/metabolismo , Brassica napus/enzimologia , Brassica napus/fisiologia , Sistemas CRISPR-Cas , Flavonoides/metabolismo , Flores/enzimologia , Flores/genética , Flores/fisiologia , Inativação Gênica , Luteína/metabolismo , Oxirredutases/genética , Pigmentação/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...