Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37896572

RESUMO

Current methods that use Unmanned Aerial Vehicle (UAV) swarms to inspect roads still have many limitations in practical applications, such as the lack of or difficulty in the route planning, the unbalanced utilization rate of the UAV swarm and the difficulty of the site selection for the distributed droneports. To solve the limitations, firstly, we construct the inspection map and remove the redundant information irrelevant to the road inspection. Secondly, we formulate both the route planning problem and the droneport site selection problem in a unified multi-objective optimization model. Thirdly, we redesign the encoding strategy, the updating rules and the decoding strategy of the particle swarm optimization method to effectively solve both the route planning problem and the droneport site selection problem. Finally, we introduce the comprehensive evaluation indicators to verify the effectiveness of the route planning and the droneport site selection. The experimental results show that (1) with the proposed method, the overlapped part of the optimized inspection routes is less than 7% of the total mileage, and the balanced utilization rate of the UAVs is above 75%; (2) the reuse rate of the distributed droneports is significantly improved after optimization; and (3) the proposed method outperforms the ant colony optimization (ACO) method in all evaluation indicators. To this end, the proposed method can effectively plan the inspection routes, balance the utilization of the UAVs and select the sites for the distributed droneports, which has great significance for a fully autonomous UAV swarm inspection system for road inspection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...