Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(23): 5658-5666, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38836292

RESUMO

Local H-bonding interactions are crucial for proteins to undergo various structural transitions and form different secondary structures. However, identifying slight distinctions in the local H-bonding of proteins is rather challenging. Here, we demonstrate that the Fermi resonance of the N-D stretching mode can provide an effective probe for the localized H-bonding environment of proteins both at the surface/interface and in the bulk. Using sum frequency generation vibrational spectroscopy and infrared spectroscopy, we established a correlation between the Fermi resonance of the N-D mode and protein secondary structures. The H-bond of N-D···C═O splits the N-D modes into two peaks (∼2410 and ∼2470 cm-1). The relative strength ratio (R) between the ∼2410 cm-1 peak and the ∼2470 cm-1 peak is very sensitive to H-bond strength and protein secondary structure. R is less than 1 for α-helical peptides, while R is greater than 1 for ß-sheet peptides. For R < 2.5, both α-helical/loop structures and ß-sheet structures exhibit almost identical Fermi coupling strengths (W = 28 cm-1). For R > 2.5, W decreases from 28 to 14 cm-1 and depends on the aggregation degree of the ß-sheet oligomers or fibrils. The initial local H-bonding status impacts the misfolding dynamics of proteins at the lipid bilayer interface.


Assuntos
Ligação de Hidrogênio , Espectrofotometria Infravermelho , Proteínas/química , Estrutura Secundária de Proteína
2.
J Phys Chem Lett ; 15(20): 5390-5396, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38739421

RESUMO

The enhanced local field of gold nanoparticles (AuNPs) in mid-infrared spectral regions is essential for improving the detection sensitivity of vibrational spectroscopy and mediating photochemical reactions. However, it is still challenging to measure its intensity at subnanometer scales. Here, using the NO2 symmetric stretching mode (νNO2) of self-assembled 4-nitrothiophenol (4-NTP) monolayers on AuNPs as a model, we demonstrated that the percentage of excited νNO2 mode, determined by femtosecond time-resolved sum-frequency generation vibrational spectroscopy, allows us to directly detect the local field intensity of the AuNP surface in subnanometer ranges. The local-field intensity is tuned by AuNP diameters. An approximate 17-fold enhancement was observed for the local field on 80 nm AuNPs compared to the Au film. Additionally, the local field can regulate the anharmonicity of the νNO2 mode by synergistic effect with molecular orientation. This work offers a promising approach to probe the local field intensity distribution around plasmonic NP surfaces at subnanometer scales.

3.
Nat Commun ; 15(1): 3314, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632229

RESUMO

Chiral recognition of amino acids is very important in both chemical and life sciences. Although chiral recognition with luminescence has many advantages such as being inexpensive, it is usually slow and lacks generality as the recognition module relies on structural complementarity. Here, we show that one single molecular-solid sensor, L-phenylalanine derived benzamide, can manifest the structural difference between the natural, left-handed amino acid and its right-handed counterpart via the difference of room-temperature phosphorescence (RTP) irrespective of the specific chemical structure. To realize rapid and reliable sensing, the doped samples are obtained as nanocrystals from evaporation of the tetrahydrofuran solutions, which allows for efficient triplet-triplet energy transfer to the chiral analytes generated in situ from chiral amino acids. The results show that L-analytes induce strong RTP, whereas the unnatural D-analytes produce barely any afterglow. The method expands the scope of luminescence chiral sensing by lessening the requirement for specific molecular structures.


Assuntos
Aminoácidos , Luminescência , Aminoácidos/química , Temperatura , Estrutura Molecular
4.
Langmuir ; 40(12): 6587-6594, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38486393

RESUMO

The coupling between different vibrational modes in proteins is essential for chemical dynamics and biological functions and is linked to the propagation of conformational changes and pathways of allosteric communication. However, little is known about the influence of intermolecular protein-H2O coupling on the vibrational coupling between amide A (NH) and amide I (C═O) bands. Here, we investigate the NH/CO coupling strength in various peptides with different secondary structures at the lipid cell membrane/H2O interface using femtosecond time-resolved sum frequency generation vibrational spectroscopy (SFG-VS) in which a femtosecond infrared pump is used to excite the amide A band, and SFG-VS is used to probe transient spectral evolution in the amide A and amide I bands. Our results reveal that the NH/CO coupling strength strongly depends on the bandwidth of the amide I mode and the coupling of proteins with water molecules. A large extent of protein-water coupling significantly reduces the delocalization of the amide I mode along the peptide chain and impedes the NH/CO coupling strength. A large NH/CO coupling strength is found to show a strong correlation with the high energy transfer rate found in the light-harvesting proteins of green sulfur bacteria, which may understand the mechanism of energy transfer through a molecular system and assist in controlling vibrational energy transfer by engineering the molecular structures to achieve high energy transfer efficiency.


Assuntos
Amidas , Água , Amidas/química , Água/química , Espectrofotometria Infravermelho/métodos , Proteínas/química , Peptídeos/química , Vibração
5.
Chempluschem ; 89(6): e202300684, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38380553

RESUMO

Protein misfolding and amyloid formation are implicated in the protein dysfunction, but the underlying mechanism remains to be clarified due to the lack of effective tools for detecting the transient intermediates. Sum frequency generation vibrational spectroscopy (SFG-VS) has emerged as a powerful tool for identifying the structure and dynamics of proteins at the interfaces. In this review, we summarize recent SFG-VS studies on the structure and dynamics of membrane-bound proteins during misfolding processes. This paper first introduces the methods for determining the secondary structure of interfacial proteins: combining chiral and achiral spectra of amide A and amide I bands and combining amide I, amide II, and amide III spectral features. To demonstrate the ability of SFG-VS in investigating the interfacial protein misfolding and amyloid formation, studies on the interactions between different peptides/proteins (islet amyloid polypeptide, amyloid ß, prion protein, fused in sarcoma protein, hen egg-white lysozyme, fusing fusion peptide, class I hydrophobin SC3 and class II hydrophobin HFBI) and surfaces such as lipid membranes are discussed. These molecular-level studies revealed that SFG-VS can provide a unique understanding of the mechanism of interfacial protein misfolding and amyloid formation in real time, in situ and without any exogenous labeling.


Assuntos
Dobramento de Proteína , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Análise Espectral/métodos , Amiloide/química , Amiloide/metabolismo , Humanos , Vibração , Animais , Estrutura Secundária de Proteína
6.
ACS Appl Mater Interfaces ; 16(1): 1326-1332, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38143329

RESUMO

Although the importance of electron-phonon interactions on the optoelectronic properties of perovskites has been well documented, the structural origin of electron-phonon interactions remains largely unexplored. In this study, using pseudohalide perovskites Cs2Pb(SCN)2I2(1-x)Br2x as a model, we have revealed how the orientation of SCN- anions tunes the electron-phonon interactions and the effective charge-carrier mobility by utilizing femtosecond sum frequency generation vibrational spectroscopy, supplemented by photoluminescence spectroscopy and femtosecond optical-pump terahertz-probe spectroscopy. The coupling between neighboring SCN- anions decreases as the Br content (x) increases but does not have a significant effect on the electron-phonon interactions. In contrast, the orientation angle of SCN- anions has a strong correlation with the electron-phonon interaction and effective charge-carrier mobility, that is, a more parallel orientation of SCN- anions leads to a higher electron-phonon interaction and lower effective charge-carrier mobility. This finding provides a molecule-level understanding of the inorganic lattice structure in tuning electron-phonon interactions and may offer valuable guidance for optimizing the optoelectronic properties of perovskites.

7.
J Am Chem Soc ; 145(49): 26925-26931, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048434

RESUMO

Insights into the interaction of fluoroalkyl groups with water are crucial to understanding the polar hydrophobicity of fluorinated compounds, such as Teflon. While an ordered hydrophobic-like 2D water layer has been demonstrated to be present on the surface of macroscopically hydrophobic fluorinated polymers, little is known about how the water infiltrates into the Teflon and what is the molecular structure of the water infiltrated into the Teflon. Using highly sensitive femtosecond sum frequency generation vibrational spectroscopy (SFG-VS), we observe for the first time that monomeric H2O and chiral OH-(H2O) complexes are present in macroscopically hydrophobic Teflon. The species are inhomogeneously distributed inside the Teflon matrix and at the Teflon surface. No water clusters or single-file water "wires" are observed in the matrix. SFG free induction decay (SFG-FID) experiments demonstrate that the OH oscillators of physically absorbed molecular water at the surface dephase on the time scale of <230 fs, whereas the water monomers and hydrated hydroxide ions infiltrated in the Teflon matrix dephase much more slowly (680-830 fs), indicating that the embedded monomeric H2O and OH-(H2O) complexes are decoupled from the outer environment. Our findings can well interpret ultrafast water permeation through fluorous nanochannels and the charging mechanism of Teflon, which may tailor the desired applications of organofluorines.

8.
Langmuir ; 39(50): 18573-18580, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051545

RESUMO

The physics and chemistry of a charged interface are governed by the structure of the electrical double layer (EDL). Determination of the interfacial water thickness (diw) of the charged interface is crucial to quantitatively describe the EDL structure, but it can be utilized with very scarce experimental methods. Here, we propose and verify that the vibrational relaxation time (T1) of the OH stretching mode at 3200 cm-1, obtained by time-resolved sum frequency generation vibrational spectroscopy with ssp polarizations, provides an effective tool to determine diw. By investigating the T1 values at the SiO2/NaCl solution interface, we established a time-space (T1-diw) relationship. We find that water has a T1 lifetime of ≥0.5 ps for diw ≤ 3 Å, while it displays bulk-like dynamics with T1 ≤ 0.2 ps for diw ≥ 9 Å. T1 decreases as diw increases from ∼3 Å to 9 Å. The hydration water at the DPPG lipid bilayer and LK15ß protein interfaces has a thickness of ≥9 Å and shows a bulk-like feature. The time-space relationship will provide a novel tool to pattern the interfacial topography and heterogeneity in Ångstrom-depth resolution by imaging the T1 values.

9.
J Am Chem Soc ; 145(38): 20745-20748, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721441

RESUMO

Owing to the well-established fact that poly(styrenesulfonate) (PSS)-based strong polyelectrolytes are pH insensitive, their applications in smart materials have thus been severely limited. However, we demonstrate here that counterion-mediated hydrogen bonding (CMHB) makes the PSS brush pH-responsive. With decreasing pH, more hydrogen bonds are formed between the bound hydronium counterions and the sulfonate (-SO3-) groups in the PSS brush. At the microscale, the formation of more hydrogen bonds with decreasing pH leads to a more ordered structure and a larger tilt angle of the -SO3- groups in the PSS brush. On the other hand, a range of important physicochemical properties of the PSS brush, including hydration, stiffness, wettability, and adhesion, are responsive to pH, induced by the effect of CMHB on the PSS brush. Our work reveals a clear structure-property relationship for the pH-responsive PSS brush. This work not only provides a new understanding of the fundamental properties of the PSS brush but also greatly extends the applications of PSS-based strong polyelectrolytes.

10.
Small ; 19(47): e2303449, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37495901

RESUMO

Chemical modifications on aromatic spacers of 2D perovskites have been demonstrated to be an effective strategy to simultaneously improve optoelectronic properties and stability. However, its underlying mechanism is poorly understood. By using 2D phenyl-based perovskites ([C6 H5 (CH2 )m NH3 ]2 PbI4 ) as models, the authors have revealed how the chemical nature of aromatic cations tunes the bandgap and charge transport of 2D perovskites by utilizing sum-frequency generation vibrational spectroscopy to determine the stacking arrangement and orientation of aromatic cations. It is found that the antiparallel slip-stack arrangement of phenyl rings between adjacent layers induces an indirect band gap, resulting in anomalous carrier dynamics. Incorporation of the CH2 moiety causes stacking rearrangement of the phenyl ring and thus promotes an indirect to direct bandgap transition. In direct-bandgap perovskites, higher carrier mobility correlates with a larger orientation angle of the phenyl ring. Further optimizing the orientation angle by introducing a para-substituted element in a phenyl ring, higher carrier mobility is obtained. This work highlights the importance of leveraging stacking arrangement and orientation of the aromatic cations to tune the photophysical properties, which opens up an avenue for advancing high-performance 2D perovskites optoelectronics via molecular engineering.

11.
Langmuir ; 39(5): 2015-2021, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36695809

RESUMO

Silicon is reported to be a promising anode material due to its high storage capacity and excellent energy conversion rate. Molecular-level insight into the interaction between silicon electrodes and electrolyte solutions is essential for understanding the formation of a stable solid electrolyte interphase (SEI), but it is yet to be explored. In this study, we apply femtosecond sum frequency generation vibrational spectroscopy to investigate the initial adsorption of various pure and mixed electrolyte molecules on the silicon anode surface by monitoring the SFG signals from the carbonyl group of electrolyte molecules. When the silicon comes in contact with a pure carbonate solution, the linear carbonates of diethyl carbonate and ethyl methyl carbonate adopt two conformations with opposite C═O orientations on the silicon interface while the cyclic carbonates of ethylene carbonate and propylene carbonate almost adopt one conformation with C═O bonds pointing toward the silicon electrode. When the silicon comes in contact with the mixed linear and cyclic carbonate solutions, the total SFG intensity from the mixed solutions is approximately 2∼5 times weaker than those of pure cyclic carbonates. The C═O bonds of cyclic carbonates point toward the silicon electrode, while the C═O bonds of linear carbonates face toward the bulk solution at the silicon/mixed solution interface. No preferential absorption behaviors of the linear and cyclic carbonate electrolytes on the silicon electrode are observed. Such findings may help to understand the mechanism by which the SEI formed on the silicon anode is unstable.

12.
Angew Chem Int Ed Engl ; 62(7): e202214208, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36470848

RESUMO

We demonstrate that an ordered 2D perovskite can significantly boost the photoelectric performance of 2D/3D perovskite heterostructures. Using selective fluorination of phenyl-ethyl ammonium (PEA) lead iodide to passivate 3D FA0.8 Cs0.2 PbI3 , we find that the 2D/3D perovskite heterostructures passivated by a higher ordered 2D perovskite have lower Urbach energy, yielding a remarkable increase in photoluminescence (PL) intensity, PL lifetime, charge-carrier mobilities (ϕµ), and carrier diffusion length (LD ) for a certain 2D perovskite content. High performance with an ultralong PL lifetime of ≈1.3 µs, high ϕµ of ≈18.56 cm2  V-1 s-1 , and long LD of ≈7.85 µm is achieved in the 2D/3D films when passivated by 16.67 % para-fluoro-PEA2 PbI4 . This carrier diffusion length is comparable to that of some perovskite single crystals (>5 µm). These findings provide key missing information on how the organic cations of 2D perovskites influence the performance of 2D/3D perovskite heterostructures.

13.
J Colloid Interface Sci ; 626: 324-333, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792463

RESUMO

HYPOTHESIS: The use of water to reduce friction has always played a significant role in a wide range of areas ranging from biology to engineering. Many efforts have been made to extensively investigate the water behavior between two contacted surfaces, but its role in water-based friction remains incompletely understood. EXPERIMENTS: Herein, we utilize the sum-frequency generation (SFG) spectroscopy to identify interfacial water structures upon adjusting the wettability of titanium dioxide (TiO2) and silicon surfaces. And the corresponding wettability-tunable underwater friction is measured by atomic force microscopy (AFM). FINDINGS: It demonstrates that enhanced wettability induces higher friction on the TiO2 surface but lower friction on the silicon surface. Although the tribological properties of TiO2 show independence of surface forces in contrast to the case of silicon, both TiO2 and silicon surfaces covered with homogeneous water molecules correspond to a lower friction coefficient. This observation indicates that a homogeneous interfacial water structure, dominating over surface forces, is of the utmost importance for achieving low friction. Our results shed new light on the origins of friction in the presence of water and reveal the ubiquitous role of interfacial water structures on friction.

14.
Langmuir ; 38(19): 6099-6105, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35499917

RESUMO

Surface plasmon-enhanced vibrational spectroscopy has been demonstrated to be an important highly sensitive diagnostic technique, but its enhanced mechanism is yet to be explored. In this study, we couple femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) with surface plasmon generated by the excitation of localized gold nanorods/nanoparticles and investigate the plasmonically enhanced factors (EFs) of SFG signals from poly(methyl methacrylate) films. Through monitoring the SFG intensity of carbonyl and ester methyl groups, we have established a correlation between EFs and the coupling of localized surface plasmon resonance with SFG and visible beams. It is found that the total enhanced factor is approximately proportional to the square of an enhanced factor of the SFG electromagnetic field and the fourth power of the enhanced factor of the visible electromagnetic field. The local field effect is roughly expressed to be the square of an enhanced factor of the visible electromagnetic field. This finding will help to guide the experimental design of plasmon-enhanced SFG to drastically improve the detection sensitivity and thus provide greater insight into the ultrafast dynamics near plasmonic surfaces.

15.
J Phys Chem Lett ; 13(14): 3224-3229, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35377653

RESUMO

Two-dimensional spontaneous reactions between an electrode and an electrolyte are very important for the formation of a solid electrolyte interphase (SEI) but difficult to study because studying such reactions requires surface/interface sensitive techniques with sufficiently structural and temporal resolutions. In this study, we have applied femtosecond broadband sum-frequency generation vibrational spectroscopy (SFG-VS) to investigate the interaction between a silicon electrode and a LiPF6-based diethyl carbonate electrolyte solution in situ and in real time. We found that two kinds of diethyl carbonate species are present on the silicon surface and their C═O stretching aligns in opposite directions. Intrinsically spontaneous chemical reactions between silicon electrodes and a LiPF6 electrolyte solution are observed. The reactions generate silicon hydride and cause corrosion of the silicon electrodes. Coating of the silicon surface with a poly(vinyl alcohol) layer can effectively retard and attenuate these reactions. This work demonstrates that SFG-VS can provide a unique and powerful state-of-the-art tool for elucidating the molecular mechanisms of SEI formation.

16.
J Chem Phys ; 156(10): 105103, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291778

RESUMO

The diagonal anharmonicity of an amide I mode of protein backbones plays a critical role in a protein's vibrational dynamics and energy transfer. However, this anharmonicity of long-chain peptides and proteins in H2O environment is still lacking. Here, we investigate the anharmonicity of the amide I band of proteins at the lipid membrane/H2O interface using a surface-sensitive pump-probe setup in which a femtosecond infrared pump is followed by a femtosecond broadband sum frequency generation vibrational spectroscopy probe. It is found that the anharmonicity of the amide I mode in ideal α-helical and ß-sheet structures at hydrophobic environments is 3-4 cm-1, indicating that the amide I mode in ideal α-helical and ß-sheet structures is delocalized over eight peptide bonds. The anharmonicity increases as the bandwidth of the amide I mode increases due to the exposure of peptide bonds to H2O. More H2O exposure amounts lead to a larger anharmonicity. The amide I mode of the peptides with large H2O exposure amounts is localized in one to two peptide bonds. Our finding reveals that the coupling between the amide I mode and the H2O bending mode does not facilitate the delocalization of the amide I mode along the peptide chain, highlighting the impact of H2O on energy transfer and structural dynamics of proteins.


Assuntos
Amidas , Água , Amidas/química , Proteínas de Membrana , Peptídeos/química , Espectrofotometria Infravermelho/métodos , Água/química
17.
J Phys Chem Lett ; 12(49): 11817-11823, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34870995

RESUMO

Molecular structures of hole transport materials (HTMs) have significant impact on the optoelectronic properties of perovskite/HTM heterojunction. But the structure-property relationship in the heterojunction remains poorly understood. By using poly(3-alkylthiophene) (P3AT) as the HTM model, here we apply sum frequency generation vibrational spectroscopy to establish correlations among conformations of P3ATs, the hole extraction ability of P3ATs from the perovskite layer, and the charge mobility of P3ATs. It is revealed that with similar energy-level alignment, the conformational order of alkyl side chains in regioregular P3ATs can effectively regulate the hole extraction ability of P3ATs from perovskite layer by tuning reorganization energy. By contrast, the charge mobility of P3ATs strongly depends on the P3AT backbone's coplanarity. Our findings decouple the roles of the long-hidden conformational order of alkyl side chain and the polythiophene backbone's coplanarity on the performance of perovskite/HTM heterojunction, offering useful guidelines for boosting the performance of optoelectronic devices.

18.
J Am Chem Soc ; 143(33): 13074-13081, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34384210

RESUMO

Hydrophobic-like water monolayers have been predicted at the metal and some polar surfaces by theoretical simulations. However, direct experimental evidence for the presence of this water layer at surfaces, particularly at biomolecule and polymer surfaces, is yet to be validated at room temperature. Here we observe experimentally that an ordered molecular water layer is present at the hydrophobic fluorinated polymer such as polytetrafluoroethylene (PTFE) surface by using sum frequency generation vibrational spectroscopy. The macroscopic hydrophobicity of PTFE surface is actually hydrophilic at the molecular level. The macroscopically hydrophobic character of PTFE is indeed resulting from the hydrophobicity of the ordered two-dimension (2D) water layer, in which cyclic water tetramer structure is found. The water layer at humidity of ≤40% has a vibrational relaxation time of 550 ± 60 fs. The vibrational relaxation time in the frequency range of 3200-3400 cm-1 shows remarkable difference from the interfacial water at the air/H2O interface and the lipid/H2O interface. No discernible frequency dependence of the vibrational relaxation time is observed, indicating the homogeneous dynamics of OH groups in the water layer. These insights into the water layer at the macroscopically hydrophobic surface may contribute to a better understanding of the hydrophobic interaction and interfacial water dynamics.

19.
J Phys Chem B ; 125(25): 7060-7067, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34159786

RESUMO

The origin of the sum-frequency generation (SFG) signal of the water bending mode has been controversially debated in the past decade. Unveiling the origin of the signal is essential, because different assignments lead to different views on the molecular structure of interfacial water. Here, we combine collinear heterodyne-detected SFG spectroscopy at the water-charged lipid interfaces with systematic variation of the salt concentration. The results show that the bending mode response is of a dipolar, rather than a quadrupolar, nature and allows us to disentangle the response of water in the Stern and the diffuse layers. While the diffuse layer response is identical for the oppositely charged surfaces, the Stern layer responses reflect interfacial hydrogen bonding. Our findings thus corroborate that the water bending mode signal is a suitable probe for the structure of interfacial water.


Assuntos
Água , Ligação de Hidrogênio , Estrutura Molecular , Análise Espectral , Propriedades de Superfície
20.
Nat Commun ; 11(1): 5481, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127934

RESUMO

The chemical nature of the organic cations governs the optoelectronic properties of two-dimensional organic-inorganic perovskites. But its mechanism is not fully understood. Here, we apply femtosecond broadband sum frequency generation vibrational spectroscopy to investigate the molecular conformation of spacer organic cations in two-dimensional organic-inorganic perovskite films and establish a correlation among the conformation of the organic cations, the charge carrier mobility, and broadband emission. Our study indicates that both the mobility and broadband emission show strong dependence on the molecular conformational order of organic cations. The gauche defect and local chain distortion of organic cations are the structural origin of the in-plane mobility reduction and broad emission in two-dimensional organic-inorganic perovskites. Both of the interlayer distance and the conformational order of the organic cations affect the out-of-plane mobility. This work provides molecular-level understanding of the conformation of organic cations in optimizing the optoelectronic properties of two-dimensional organic-inorganic perovskites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...