Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897574

RESUMO

Owing to the high absorption capacity of recycled aggregate (RA), it is crucial to accurately measure its saturated-surface-dried water absorption (WSSD), which largely affects an effective water-to-binder ratio of recycled aggregate concrete. In this study, existing measurement methods for the WSSD of RA are extensively reviewed, including Wiping, Slumping, Centrifugation, Infrared, Evaporation, Airflow drying, Conductivity, Pycnometer, Hydrostatic balance, and Extrapolation. In particular, the physical principles and operability of these methods are emphasized. It was determined that the accuracy of all test results was not satisfactory. For example, the water in pores with an open-ended direction that was opposite to the centrifugal force could largely be retained. In Airflow drying, the temperature change was significantly delayed. In addition, in Hydrostatic balance, RA would pre-absorb water before determining the initial reading. Therefore, several suggestions for optimizing these methods are presented, such as the combination of Evaporation and Airflow drying, the liquid selection in Hydrostatic balance, and the addition of a tiny mixer in each centrifuge tube. In summary, this review facilitates the development of an accurate and convenient method for measuring the WSSD of RA.

2.
Materials (Basel) ; 15(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35329561

RESUMO

The substitution of river sand with glass aggregate (GA) and cement with glass powder (GP) is a mainstream method to recycle waste glass. Traditionally, standard curing was widely used for glass-based mortars. However, it is time-consuming and cannot address low mechanical strengths of the early-age mortars. Therefore, the effect of water curing at 80 °C on the properties of GA mortars is investigated. Furthermore, the effect of the GP size is also considered. Results show that compared with the expansion of alkali-silica reaction (ASR), water curing at 80 °C has a negligible effect on the volume change. Moreover, the compressive strength of GA mortars under 1-day water curing at 80 °C is comparable with that under 28-day water curing at 20 °C. Therefore, the 1-day water curing at 80 °C is proposed as an accelerated curing method for GA mortars. On the other hand, the addition of GP with the mean size of 28.3 and 47.9 µm can effectively mitigate the ASR expansion of GA mortars. Compared with the size of 28.3 µm, GA mortars containing GP (47.9 µm) always obtain higher compressive strength. In particular, when applying the 1-day water curing at 80 °C, GA mortars containing GP (47.9 µm) can even gain higher strength than those containing fly ash.

3.
Materials (Basel) ; 14(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34442896

RESUMO

Reduced graphene oxide (rGO) has been widely used to modify the mechanical performance of alkali activated slag composites (AASC); however, the mechanism is still unclear and the electrical properties of rGO reinforced AASC are unknown. Here, the rheological, mechanical, and electrical properties of the AASC containing rGO nanosheets (0, 0.1, 0.2, and 0.3% wt.) are investigated. Results showed that rGO nanosheets addition can significantly improve the yield stress, plastic viscosity, thixotropy, and compressive strength of the AASC. The addition of 0.3% wt. rGO nanosheets increased the stress, viscosity, thixotropy, and strength by 186.77 times, 3.68 times, 15.15 times, and 21.02%, respectively. As for electrical properties, the impedance of the AASC increased when the rGO content was less than 0.2% wt. but decreased with the increasing dosage. In contrast, the dielectric constant and electrical conductivity of the AASC containing rGO nanosheets decreased and then increased, which can be attributed to the abundant interlayer water and the increasing structural defects as the storage sites for charge carriers, respectively. In addition, the effect of graphene oxide (GO) on the AASC is also studied and the results indicated that the agglomeration of GO nanosheets largely inhibited the application of it in the AASC, even with a small dosage.

4.
Materials (Basel) ; 13(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120769

RESUMO

Development of low thermal conductivity and high strength building materials is an emerging strategy to solve the heavy energy consumption of buildings. This study develops sustainable alkali activated materials (AAMs) for structural members from waste expanded polystyrene (EPS) beads and reduced graphene oxide (rGO) to simultaneously meet the thermal insulation and mechanical requirements of building energy conservation. It was found that the thermal conductivity of AAMs with 80 vol.% EPS and 0.04 wt.% rGO (E8-G4) decreased by 74% compared to the AAMs without EPS and rGO (E0). The 28-day compressive and flexural strengths of E8-G4 increased by 29.8% and 26.5% with the addition of 80 vol.% EPS and 0.04 wt.% rGO, compared to the sample with 80 vol.% EPS without rGO (E8). In terms of compressive strength, thermal conductivity, and cost, the efficiency index of E8-G4 was higher than those of other materials. A building model made from AAMs was designed using building information modeling (BIM) tools to simulate energy consumption, and 31.78% of total energy consumption (including heating and cooling) was saved in the building operation period in Harbin City, China. Hence, AAMs made of waste EPS beads and rGO can realize the structural and functional integrated application in the future.

5.
Nanomaterials (Basel) ; 9(12)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816867

RESUMO

With the development of nanotechnology, reduced graphene oxide (rGO) has been used to improve the flexural strength of geopolymers. However, the reinforcing mechanism of rGO nanosheets on the flexural strength of geopolymers remains unclear. Here, this reinforcing mechanism was investigated from the perspectives of hydration and chemical composition. The effect of the reduction degree on rGO-reinforced geopolymers was also studied using isothermal calorimetry (IC), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) tests. Results show that the hydration degree and flexural strength of geopolymers effectively increase due to rGO addition. After alkali reduction at a temperature of 60 °C, rGO nanosheets have maximum reinforcement on the flexural strength of geopolymers with an increment of 51.2%. It is attributed to the promotion of slag hydration, as well as the simultaneous formation of calcium silicate hydrate with low Ca/Si ratio (C-S-H(I)) and calcium aluminosilicate hydrate (C-A-S-H) phases due to the inhibiting effect of rGO nanosheets on Al substitution on the end-of-chain silicates of C-S-H and C-A-S-H gels. In addition, different reduction degrees have almost no effect on the chemical composition of rGO-reinforced geopolymers, while excessive reduction impairs the improving effect of rGO nanosheets on the hydration process and flexural strength of geopolymers due to significant structural defects.

6.
Nanomaterials (Basel) ; 9(2)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791393

RESUMO

Calcium leaching is a degradation progress inside hardened cement composites, where Ca2+ ions in cement pore solution can migrate into the aggressive solution. In this work, calcium leaching of graphene oxide (GO) reinforced cement composites was effectively characterized by combined techniques of electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). Inhibiting mechanism of GO on calcium leaching of the composites was also examined. The obtained results show that the diameter of the semi-circle of the Nyquist curves of leached samples with GO addition decreased less than that of controlled samples. After leaching for 35 days, loss rate of model impedance RCCP of leached samples with 0, 0.05, 0.1, 0.15, and 0.2 wt.% GO addition was 94.85%, 84.07%, 79.66%, 75.34%, and 68.75%, respectively. Therefore, GO addition can significantly mitigate calcium leaching of cement composites, since it can absorb Ca2+ ions in cement pore solution, as well as improve the microstructure of the composites. In addition, coupling leaching depth and compressive strength loss were accurately predicted by using the impedance RCCP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...