Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134246, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603911

RESUMO

Hydroxyl radicals (·OH) generated during the flooding-drought transformation process play a vital role in affecting nutrient cycles at riparian zone. However, information on the processes and mechanisms for ·OH formation under the influence of microplastics (MPs) remains unclear. In this study, the effects of MPs on ·OH production from riparian sediments with different biomass [e.g., vegetation lush (VL) and vegetation barren (VB)] were studied. The results showed that presence of MPs inhibited the production of ·OH by 27 % and 7.5 % for VB and VL sediments, respectively. The inhibition was mainly resulted from the MP-induced reduction of the biotic and abiotic mediated Fe redox processes. Spectral analysis revealed that VL sediments contained more high-molecular-weight humic-like substances. Presence of MPs increased the abundances and activities of Proteobacteria, Acidobacteria and Actinobacteria, which were conducive to the changes in humification and polar properties of organic matters. The reduced humic- and fulvic-like substances were accumulated in the flooding period and substantially oxidized during flooding/drought transformation due to the enhanced MP-mediated electron transfer abilities, thus mitigated the MP-induced inhibition effects. Therefore, in order to better understanding the biogeochemical cycling of contaminants as influenced by ·OH and MPs in river ecosystems, humic substances should be considered systematically.

2.
Environ Pollut ; 315: 120354, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215775

RESUMO

Microplastics (MPs) are ubiquitous in aquatic ecosystems and can significantly influence the growth, aggregation and functions of phytoplankton biomass. However, variations in the extracellular polymeric substances (EPS) of phytoplankton in terms of compositions and structures in response to MPs were still not reported. In this study, EPS matrix of Microsystis aeruginosa was applied and fractionated into loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) fractions, with the time-dependent changes in response to different concentrations (10, 100 and 500 mg/L) of MPs being explored via using the fluorescence excitation emission matrix coupled with parallel factor (EEM-PARAFAC) and two-dimensional Fourier transform infrared correlation spectroscopy (2D-FTIR-COS) analysis. Results showed that 500 mg/L of MP concentration significantly inhibited Microcystis growth by 30.5% but enhanced EPS secretion. In addition, organic composition in LB-EPS and TB-EPS varied differently in response to increased MP exposure, as the ratio of polysaccharide/protein increased in the TB-EPS but decreased in LB-EPS. Further analysis revealed obvious heterogeneities in organic component variations in response to MPs, as the C-O functional groups and glycosidic bonds in the TB-EPS preferentially responded, which lead to the domination of polysaccharides and humus substances; while the carbonyl, carboxyl and amino functional groups in the LB-EPS exhibited a preferential response, which caused the enhanced percentage of the tryptophan-like proteins. In addition to organic compositions, the aromaticity, hydrophobicity and humification in the LB-EPS fraction increased with enhanced MP exposure, which, as a result, may influence the ecotoxicological risk of MPs. Therefore, Microcystis can dynamically adjust not only the EPS contents but also the compositions in response to MPs exposure. The results can improve our understanding on the eco-physiological impact of phytoplankton-MP interaction in aquatic environment, and indicate that the dose-dependent and long-term effects of MPs on phytoplankton should be considered in future study.


Assuntos
Microcystis , Microcystis/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Microplásticos , Plásticos/metabolismo , Ecossistema , Polissacarídeos/metabolismo , Proteínas/metabolismo , Esgotos/química
3.
Environ Res ; 200: 111424, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34126049

RESUMO

As the emerging contaminants, the behavior and fate of microplastics (MPs) were highly related to the interactions with surrounding organic matters. However, information on the effects of molecular sizes of organic matters on the interaction is still lacking. In this study, the bulk algal-derived organic matter (AOM) samples were obtained and further fractionated into high molecular weight (HMW-, 1kDa-0.45 µm) and low molecular weight (LMW-, < 1 kDa) fractions. The interaction between MPs [polyethylene (PE) and polystyrene (PS)] and these MW-fractionated AOMs were characterized by dissolved organic carbon, fluorescence and absorbance spectroscopy, and fourier transform infrared (FTIR) analysis. Results showed that presence of AOM could effectively inhibit the release of additives from MPs. Further analysis found that the inhibition extents decreased in the order of HMW- > bulk > LMW-AOM. The absorbance and fluorescence spectroscopy showed that aromatic protein-like substances in HMW fraction exhibited higher adsorption affinity to MPs than the bulk and LMW counterparts. The strong sorption of aromatic substances may offer more binding sites for additives to inhibit the release of organic substances. Moreover, two dimensional FTIR correlation spectroscopy revealed that the HMW non-aromatic substances were preferentially adsorbed onto PS, which led to an enhanced adsorption capacity to additives by forming H-bonding. Therefore, the MW- and component-dependent heterogeneities of AOM samples must be fully considered in evaluating the environmental behavior of MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Peso Molecular , Plásticos , Poliestirenos , Poluentes Químicos da Água/análise
4.
Environ Res ; 194: 110709, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33434606

RESUMO

Dissolved effluent organic matter (dEfOM) from wastewater treatment plants (WWTPs) is bound to encounter photo- and bio-degradation as discharged into the receiving water body. However, the comprehensive variations of dEfOM by photo- and bio-degradation are not well unveiled because of its compositional heterogeneity. In this work, dissolved organic carbon (DOC) concentrations, UV-Vis and fluorescent spectra combined with fluorescence regional integration (FRI) analysis were used to investigate the changes in bulk dEfOM and its fluorescent components during photo- and bio-degradation processes in the receiving water body. Results showed that 48.49%-69.62% of the discharged dEfOM was decomposed by ultra violet (UV)-irradiation and indigenous microbes, while the others (33%-45%) were recalcitrant and stable in the receiving water body. Specifically, the photo- and bio-degradation of chromophoric, fluorescent dEfOM and its components were found to follow the single or double exponential kinetic model, and the differences in photo- and bio-degradability of each components shifted its composition. Furthermore, results of bio-degradation after UV-irradiated dEfOM indicated that there was overlapping of photo- and bio-degradable fractions in dEfOM, and photoreactions could improve the self-production of natural organic matter in the receiving water body. These results could improve the understanding the fate of discharged dEfOM in the receiving water body, and we proposed some cost-effective strategies for discharging WWTPs effluent.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Biodegradação Ambiental , Cinética , Águas Residuárias , Água , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 748: 142309, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113670

RESUMO

Extracellular polymeric substances (EPSs), which composed of different organic components, play an important role in the formation of mucilaginous cyanobacterial bloom. However, how the phylogeny of microbial community coupling with the degradation of EPS matrixes remains unclear. A better understanding of the dynamic process not only give insight into the carbon cycling in the phycosphere, but also provide a new approach for controlling the cyanobacteria bloom. In this study, fractionated EPSs were prepared as a carbon source to enrich different particle size microorganisms. Changes of organic components in EPSs and microbial communities in the degradation process were investigated using Fluorescence excitation and emission matrix (EEM) and Illumina sequencing. The results showed that it is the change of organic components in the degradation process that causes the microbial community to follow a certain succession law. Size-fractionated microorganisms exhibited different hydrolytic activities when interacting with macromolecules, but they did not present different phylogenetic compositions. The changes of humic-like C1 and tryptophan-like C3 in EPSs were significantly correlated to the variations of microbial community composition and diversity. Tightly-bound EPSs (TB-EPSs) contained more low molecular single carbon compounds and were more easily utilized by more diverse microorganisms. Betaproteobacteria, Firmicute, Alphaproteobacteria, Sphingobacteria and Actinobacter were significantly correlated with the changes of organic maters through the humification process. Meanwhile, loosely-bound EPSs (LB-EPSs), which composed of more macromolecules, were more affiliated to a functional organized microbial community. When Gammaproteobacteria and Betaproteobacteria were involved in LB-EPS degradation as indicators, the polysaccharide structures changed dramatically. And the content of some small molecules was briefly increased during the degradation process. Therefore, in order to prevent algal bloom from reducing cellular aggregation by decreasing viscous EPSs, specialized microbial communities should be considered in the phycosphere.


Assuntos
Cianobactérias , Matriz Extracelular de Substâncias Poliméricas , Eutrofização , Filogenia , Polissacarídeos
6.
Environ Pollut ; 218: 59-65, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27552038

RESUMO

The sediment microbial fuel cell (SMFC) has potential application to control the degradation of decayed cyanobacterial bloom biomass (CBB) in sediment in eutrophic lakes. In this study, temperatures from 4 to 35 °C were investigated herein as the major impact on SMFC performance in CBB-amended sediment. Under low temperature conditions, the SMFC could still operate, and produced a maximum power density of 4.09 mW m-2 at 4 °C. Coupled with the high substrate utilization, high output voltage was generated in SMFCs at high temperatures. The application of SMFC affected the anaerobic fermentation progress and was detrimental to the growth of methanogens. At the same time, organic matter of sediments in SMFC became more humified. As a result, the fermentation of CBB was not accelerated with the SMFC application, and the removal efficiency of the total organic matter was inhibited by 5% compared to the control. Thus, SMFC could operate well year round in sediments with a temperature ranging from 4 to 35 °C, and also exhibit practical value by inhibiting quick CBB decomposition in sediments in summer against the pollution of algae organic matter.


Assuntos
Fontes de Energia Bioelétrica , Cianobactérias/crescimento & desenvolvimento , Eutrofização , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Biodegradação Ambiental , Biomassa , China , Eletrodos , Sedimentos Geológicos/química , Temperatura
7.
PLoS One ; 9(3): e93130, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24682039

RESUMO

Cyanobacterial blooms frequently occur in freshwater lakes, subsequently, substantial amounts of decaying cyanobacterial bloom biomass (CBB) settles onto the lake sediments where anaerobic mineralization reactions prevail. Coupled Fe/S cycling processes can influence the mobilization of phosphorus (P) in sediments, with high releases often resulting in eutrophication. To better understand eutrophication in Lake Taihu (PRC), we investigated the effects of CBB and temperature on phosphorus cycling in lake sediments. Results indicated that added CBB not only enhanced sedimentary iron reduction, but also resulted in a change from net sulfur oxidation to sulfate reduction, which jointly resulted in a spike of soluble Fe(II) and the formation of FeS/FeS2. Phosphate release was also enhanced with CBB amendment along with increases in reduced sulfur. Further release of phosphate was associated with increases in incubation temperature. In addition, CBB amendment resulted in a shift in P from the Fe-adsorbed P and the relatively unreactive Residual-P pools to the more reactive Al-adsorbed P, Ca-bound P and organic-P pools. Phosphorus cycling rates increased on addition of CBB and were higher at elevated temperatures, resulting in increased phosphorus release from sediments. These findings suggest that settling of CBB into sediments will likely increase the extent of eutrophication in aquatic environments and these processes will be magnified at higher temperatures.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Eutrofização/fisiologia , Sedimentos Geológicos/química , Lagos/química , Lagos/microbiologia , Fósforo/química , Biomassa , Monitoramento Ambiental/métodos , Água Doce/análise , Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Lagos/análise , Fosfatos/química , Enxofre/química , Temperatura , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...