Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Bioprocess ; 11(1): 72, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031294

RESUMO

In order to promote the development and utilization of desert sand, this study is based on researching the most suitable ratio of bio-cement, analyzing the shear strength and permeability of improved desert sand by combining bio-cement and fly ash, and clarifying the applicability of tap water in bio-cement. The relationship between the two and the microstructural properties was investigated using the results of the straight shear test and the permeability test. The results showed that the urease solution prepared with tap water had a more pronounced temperature resistance. The urea concentration and the corresponding pH environment had a direct effect on the urease activity. The calcium carbonate yield was positively correlated with the calcium concentration, and the urea concentration was higher in the ranges of 1.0-1.5 mol/L. As the enzyme-to-gel ratio decreased, the calcium carbonate precipitate produced per unit volume of urease solution gradually converged to a certain value. The shear strength (increased by 37.9%) and permeability (decreased by about 8.9-68.5%) of the modified desert sand peaked with the increase in fly ash content. The microscopic test results indicated that the fly ash could provide nucleation sites for the bio-cement, effectively improving the mechanical properties of the desert sand. The crystal types of calcium carbonate in the modified desert sand were calcite and aragonite, which were the most stable crystal types. This study provides innovative ideas for interdisciplinary research in the fields of bioengineering, ecology and civil engineering.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38976006

RESUMO

Bio-cement is a green and energy-saving building material that has attracted much attention in the field of ecological environment and geotechnical engineering in recent years. The aim of this study is to investigate the use of bio-cement (enzyme-induced calcium carbonate precipitation-EICP) in combination with admixtures for the improvement of desert sands, which can effectively improve the mechanical properties of desert sands and is particularly suitable for sand-rich countries. In addition, the suitability of tap water in bio-cement was elucidated and the optimum ratio of each influencing factor when tap water is used as a solvent was derived. The results showed that peak values of unconfined compressive strength (maximum increase of about 130 times), shear strength (increase of 27.09%), calcium carbonate precipitation value (increase of about 4.39 times), and permeability (decrease of about 93.72 times) were obtained in the specimens modified by EICP combined with admixture as compared to the specimens modified by EICP only. The incorporation of skimmed milk powder, though significantly increasing the strength, is not conducive to cost control. The microscopic tests show that the incorporation of admixtures can provide nucleation sites for EICP, thus improving the properties of desert sand. This work can provide new research ideas for cross-fertilization between the disciplines of bio-engineering, ecology, and civil engineering.

3.
PeerJ ; 11: e15328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180575

RESUMO

Background: Pyrus ussuriensis (Maxim.) is a unique pear tree that grows in northern China. The tree has strong cold resistance and can withstand low temperatures from -30 °C to -35 °C. Due to its unique growth environment, its fruit is rich in minerals and has much higher levels of minerals such as K, Ca and Mg than the fruit of Pyrus pyrifolia (Nakai.) and Pyrus bretschneideri (Rehd.) on the market, and many say the ripe fruit tastes better than other varieties. A comprehensive analysis of the characteristics of mineral elements in the fruits of different varieties of P. ussuriensis will provide a valuable scientific basis for the selection, breeding and production of consumer varieties of P. ussuriensis, and provide a more complete understanding of nutritional differences between fruit varieties. Methods: In this study, 70 varieties of wild, domesticated and cultivated species of P. ussuriensis from different geographical locations were compared. Targeting four main mineral elements and eight trace mineral elements contained in the fruit, the differences in mineral content in the peel and pulp of different varieties of P. ussuriensis were analyzed, compared and classified using modern microwave digestion ICP-MS. Results: The mineral elements in the fruit of P. ussuriensis generally followed the following content pattern: K > P > Ca > Mg > Na > Al > Fe > Zn > Cu > Cr > Pb > Cd. The mineral element compositions in the peel and pulp of different fruits were also significantly different. The four main mineral elements in the peel were K > Ca > P > Mg, and K > P > Mg > Ca in the pulp. The mineral element content of wild fruit varieties was higher than that of cultivated and domesticated varieties. Correlation analysis results showed that there was a significant positive correlation between K, P and Cu in both the peel and pulp of P. ussuriensis fruit (P < 0. 01). Cluster analysis results showed that the 70 varieties of P. ussuriensis could be divided into three slightly different categories according to the content of the peel or pulp. According to the contents of the fruit peel, these varieties were divided into: (1) varieties with high Na, Mg, P, K, Fe and Zn content, (2) varieties with high Ca content and (3) varieties with medium levels of mineral elements. According to the fruit pulp content, these varieties were divided into: (1) varieties with high Mg, P and K content, (2) varieties with low mineral element content, and (3) varieties with high Na and Ca content. The comprehensive analysis of relevant mineral element content factors showed that 'SSHMSL,' 'QYL,' 'SWSL' and 'ZLTSL-3' were the best varieties, and could be used as the focus varieties of future breeding programs for large-scale pear production.


Assuntos
Pyrus , Oligoelementos , Frutas/química , Melhoramento Vegetal , Minerais/análise , Oligoelementos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...