Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 393: 122296, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32126421

RESUMO

The recovery of heavy metals from industrial solid waste is of great significance for simultaneously alleviating heavy metal pollution and recycling valuable metal resources. However, the complex compositions of the multiple metallic electroplating waste severely limit the selective recovery of metal resources such as nickel. In this study, a kind of nickel-laden electroplating sludge was taken as an example and the Ni in it was targetedly converted into highly valuable NiFe2O4 (nickel ferrite) nanomaterials via a regulator assisted hydrothermal acid-washing strategy, eventually leading to selective extraction of Ni and Ca from the sludge. Sodium carbonate was the best regulator for the formation of NiFe2O4, and under the optimal conditions, the extraction rates of Ni and Ca are 96.70 % and 99.66 %, respectively. The as-prepared NiFe2O4 nanoparticles exhibited stable electrochemical Li-storage performances, such as a reversible capacity of approximate 316.94 mA h/g at 0.5 A/g and a long cycle life exceeding 100 cycles, with nearly no capacity decay. This work provides a facile and sustainable approach for targeted conversion of heavy metals in industrial solid waste to high-valuable functional materials and selective recovery of heavy metals from multi-metal solid wastes.

2.
Nano Lett ; 19(3): 1860-1866, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30676748

RESUMO

Sn-based anode materials have become potential substitutes for commercial graphite anode due to their high specific capacity and good safety. In this paper, ultrafine Sn nanoparticles embedded in nitrogen and phosphorus codoped porous carbon nanorods (Sn@C) are obtained by carbonizing bacteria that adsorb the Sn electroplating sludge extracting solution. The as-prepared Sn@C rod-shaped composite exhibits superior electrochemical Li-storage performances, such as a reversible capacity of approximate 560 mAh/g at 1 A/g and an ultralong cycle life exceeding 1500 cycles, with approximately no capacity decay. The ultrastable structure of the Sn@C was revealed using in situ transmission electron microscope at the nanoscale and indicated that the Sn@C composite could restrict the volume expansion of Sn nanoparticles during the lithiation/delithiation cycles. This work provides a new insight into addressing the electroplating sludge and designing novel lithium ion battery anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...