Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 18(sup1): 244-253, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34074215

RESUMO

Various kinds of cap structures, such as m7G, triphosphate groups, NAD and dpCoA, protect the 5' terminus of RNA. The cap structures bond covalently to RNA and affect its stability, translation, and transport. The removal of the caps is mainly executed by Nudix hydrolase family proteins, including Dcp2, RppH and NudC. Numerous efforts have been made to elucidate the mechanism underlying the removal of m7G, triphosphate group, and NAD caps. In contrast, few studies related to the cleavage of the RNA dpCoA cap have been conducted. Here, we report the hydrolytic activity of Escherichia coli NudC towards dpCoA and dpCoA-capped RNA in vitro. We also determined the crystal structure of dimeric NudC in complex with dpCoA at 2.0 Å resolution. Structural analysis revealed that dpCoA is recognized and hydrolysed in a manner similar to NAD. In addition, NudC may also remove other dinucleotide derivative caps of RNA, which comprise the AMP moieties. NudC homologs in Saccharomyces cerevisiae and Arabidopsis thaliana exhibited similar dpCoA decapping (deCoAping) activity. These results together indicate a conserved mechanism underpinning the hydrolysis of dpCoA-capped RNA in both prokaryotes and eukaryotes.


Assuntos
Coenzima A/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Pirofosfatases/metabolismo , Capuzes de RNA/química , RNA Bacteriano/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/genética , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Nudix Hidrolases
2.
J Hazard Mater ; 267: 71-80, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24413053

RESUMO

Na-montmorillonites were modified with two novel hydroxyl-containing Gemini surfactants, 1,3-bis(hexadecyldimethylammonio)-2-hydroxypropane dichloride (BHHP) and 1,3-bis(octyldimethylammonio)-2-hydroxypropane dichloride (BOHP), via ion-exchange reaction in this study. The modified samples were characterized by X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy. Phenol and catechol were removed from aqueous solution by these two kinds of organo-montmorillonites in a batch system. Important parameters have been investigated, which affect the adsorption efficiency, such as the amount of modifier, temperature, pH and contact time. The adsorption kinetics of phenol and catechol were discussed using pseudo-first-order, pseudo-second-order and intra-particle diffusion model. It indicated that the experimental data fitted very well with the pseudo-second-order kinetic model, and the equilibrium adsorption data was proved in good agreement with the Langmuir isotherm. The result also showed the adsorption capacity of catechol was higher than that of phenol in the same conditions, which might result from the extra hydroxyl in the structure of catechol. Thermodynamic quantities such as Gibbs free energy (ΔG°), the enthalpy (ΔH°), and the entropy change of sorption (ΔS°) were also determined. These parameters suggested the adsorption of phenol was a spontaneous and exothermic process, while the sorption of catechol was endothermic.


Assuntos
Alcenos/química , Bentonita/química , Catecóis/química , Fenóis/química , Compostos de Amônio Quaternário/química , Adsorção , Algoritmos , Difusão , Poluentes Ambientais/química , Concentração de Íons de Hidrogênio , Troca Iônica , Cinética , Modelos Químicos , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...