Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37215746

RESUMO

Purpose: This study aimed to evaluate the clinical outcomes of high-flow nasal cannula (HFNC) compared with conventional oxygen therapy (COT) in patients with hypercapnic chronic obstructive pulmonary disease (COPD), including arterial partial pressure of carbon dioxide (PaCO2), arterial partial pressure of oxygen (PaO2), respiratory rate (RR), treatment failure, exacerbation rates, adverse events and comfort evaluation. Patients and Methods: PubMed, EMBASE and the Cochrane Library were retrieved from inception to September 30, 2022. Eligible trials were randomized controlled trials and crossover studies comparing HFNC and COT in hypercapnic COPD patients. Continuous variables were reported as mean and standard derivation and calculated by weighted mean differences (MD), while dichotomous variables were shown as frequency and proportion and calculated by odds ratio (OR), with the 95% confidence intervals (Cl). Statistical analysis was performed using RevMan 5.4 software. Results: Eight studies were included, five with acute hypercapnia and three with chronic hypercapnia. In acute hypercapnic COPD, short-term HFNC reduced PaCO2 (MD -1.55, 95% CI: -2.85 to -0.25, I² = 0%, p <0.05) and treatment failure (OR 0.54, 95% CI: 0.33 to 0.88, I² = 0%, p<0.05), but there were no significant differences in PaO2 (MD -0.36, 95% CI: -2.23 to 1.52, I² = 45%, p=0.71) and RR (MD -1.07, 95% CI: -2.44 to 0.29, I² = 72%, p=0.12). In chronic hypercapnic COPD, HFNC may reduce COPD exacerbation rates, but there was no advantage in improving PaCO2 (MD -1.21, 95% CI: -3.81 to 1.39, I² = 0%, p=0.36) and PaO2 (MD 2.81, 95% CI: -1.39 to 7.02, I² = 0%, p=0.19). Conclusion: Compared with COT, short-term HFNC reduced PaCO2 and the need for escalating respiratory support in acute hypercapnic COPD, whereas long-term HFNC reduced COPD exacerbations rates in chronic hypercapnia. HFNC has great potential for treating hypercapnic COPD.


Assuntos
Ventilação não Invasiva , Doença Pulmonar Obstrutiva Crônica , Insuficiência Respiratória , Humanos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/terapia , Oxigênio , Hipercapnia/diagnóstico , Hipercapnia/etiologia , Hipercapnia/terapia , Cânula , Ventilação não Invasiva/efeitos adversos , Oxigenoterapia/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Phys Chem Chem Phys ; 25(12): 8734-8742, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36896849

RESUMO

Due to the existence of a small polaron, the intrinsic electronic conductivity of olivine-structured LiFePO4 is quite low, limiting its performance as a cathode material for lithium-ion batteries (LIBs). Previous studies have mainly focused on improving intrinsic conductivity through Fe-site doping while P-site or O-site doping has rarely been reported. Herein, we studied the formation and dynamics of the small electron polaron in FeP1-αXαO4 and FePO4-ßZß by employing the density functional theory with the on-site Hubbard correction terms (DFT+U) and Kinetic Monte Carlo (KMC) simulation, where X and Z indicate the doping elements (X = S, Se, As, Si, V; Z = S, F, Cl), and α and ß indicate the light doping at the P position (α = 0.0625) and O position (ß = 0.015625), respectively. We confirmed the small electron polaron formation in pristine FePO4 and its doped systems, and the polaron hopping rates for all systems were calculated according to the Marcus-Emin-Holstein-Austin-Mott (MEHAM) theory. We found that the hopping process is adiabatic for most cases with the defects breaking the original symmetry. Based on the KMC simulation results, we found that the doping of S at the P site changes the polaron's motion mode, which is expected to increase the mobility and intrinsic electronic conductivity. This study attempts to provide theoretical guidance to improve the electronic conductivity of LiFePO4-like cathode materials with better rate performance.

3.
Materials (Basel) ; 15(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35161145

RESUMO

Incremental sheet metal forming characterized as increased flexibility and local plastic deformation is well suitable for low-production-run manufacturing and a new sample trial production of complex shapes. Thickness thinning is still an obstacle to the application of incremental forming. In this study, a novel mathematical algorithm based on a non-uniform rational B-spline (NURBS) surface was proposed and implemented which focuses on predicting and calculating the final thickness for arbitrary parts in incremental forming. In order to evaluate the validity of the proposed model, the finite element simulation and forming experiments of three kinds of parts, such as truncated cones, truncated pyramids and ellipsoid parts, were conducted. The thickness of theoretical prediction was compared with that of finite element simulation and experiment, and good agreements were obtained. The results show that the proposed model and the method are effective and robust for predicting the thickness of the formed parts in incremental sheet metal forming.

5.
Acc Chem Res ; 52(8): 2201-2209, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31180201

RESUMO

Lithium ion batteries (LIBs) not only power most of today's hybrid electric vehicles (HEV) and electric vehicles (EV) but also are considered as a promising system for grid-level storage. Large-scale applications for LIBs require substantial improvement in energy density, cost, and lifetime. Layered lithium transition metal (TM) oxides, in particular, Li(NixMnyCoz)O2 (NMC, x + y + z = 1) are the most promising candidates as cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety. In order to further boost Li storage capacity, a great deal of attention has been directed toward developing Ni-rich layered TM oxides. However, structural disorder as a result of Ni/Li exchange in octahedral sites becomes a critical issue when Ni content increases to high values, as it leads to a detrimental effect on Li diffusivity, cycling stability, first-cycle efficiency, and overall electrode performance. Increasing effort has been dedicated to improving the electrochemical performance of layered TM oxides via reduction of cationic mixing. Therefore, it is important to summarize this research field and provide in-depth insight into the impact of Ni/Li disordering on electrochemical characteristics in layered TM oxides and its origin to accelerate the future development of layered TM oxides with high performance. In this Account, we start by introducing the Ni/Li disordering in LiNiO2, the experimental characterization of Ni/Li disordering, and analyzing the impact of Ni/Li disordering on electrochemical characteristics of layered TM oxides. The antisite Ni in the Li layer can limit the rate performance by impeding the Li ion transport. It will also degrade the cycling stability by inducing anisotropic stress in the bulk structure. Nevertheless, the antisite Ni ions do not always bring drawbacks to the electrochemical performance; some studies including our works found that it can improve the thermal stability and the cycling structure stability of Ni-rich NMC materials. We next discuss the driving forces and the kinetic advantages accounting for the Ni/Li exchange and conclude that the steric effect of cation size and the magnetic interactions between TM cations are the two main driving forces to promote the Ni/Li exchange during synthesis and the electrochemical cycling, and the low energy barrier of Ni2+ migration from the 3a site in the TM layer to the 3b site in the Li layer further provides a kinetic advantage. Based on this understanding, we then review the progress made to control the Ni/Li disordering through three main ways: (i) suppressing the driving force from the steric effect by ion exchange; (ii) tuning the magnetic interaction by cationic substitution; (iii) kinetically controlling Ni migration. Finally, our brief outlook on the future development of layered TM oxides with controlled Ni/Li disordering is provided. It is believed that this Account will provide significant understanding and inspirations toward developing high-performance layered TM oxide cathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...