Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 171194, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408677

RESUMO

Soil near waste rock often contains high concentrations of antimony (Sb), but the mechanisms that mobilize Sb in a soil closely impacted by the waste rock piles are not well understood. We investigated these mobility mechanisms in soils near historical waste rock at the world's largest Sb mine. The sequential extraction (BCR) of soil reveal that over 95 % Sb is present in the residual fraction. The leached Sb concentration is related to the surface protonation and deprotonation of soil minerals. SEM-EDS shows Sb in the soil is associated with Fe and Ca. Moreover, X-ray absorption spectroscopy (XAS) results show Sb is predominantly present as Sb(V) and is associated with Fe in the form of tripuhyite (FeSbO4) as well as edge- and corner-sharing complexes on ferrihydrite and goethite. Thus, Fe in soils is important in controlling the mobility of Sb via surface complexation and co-precipitation of Sb by Fe oxides. The initially surface-adsorbed Sb(V) or co-precipitation is likely to undergo a phase transformation as the Fe oxides age. In addition, Sb mobility may be controlled by small amounts of calcium antimonate. These results further the understanding of the effect of secondary minerals in soils on the fate of Sb from waste rock weathering and inform source treatment for Sb-contaminated soils.

2.
Environ Sci Technol ; 57(45): 17427-17438, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37697639

RESUMO

The enrichment of geogenic phosphorus (P) in groundwater systems threatens environmental and public health worldwide. Two significant factors affecting geogenic P enrichment include organic matter (OM) and Fe (oxyhydr)oxide (FeOOH). However, due to variable reactivities of OM and FeOOH, variable strategies of their coupled influence controlling P enrichment in groundwater systems remain elusive. This research reveals that when the depositional environment is enriched in more labile aliphatic OM, its fermentation is coupled with the reductive dissolution of both amorphous and crystalline FeOOHs. When the depositional environment is enriched in more recalcitrant aromatic OM, it largely relies on crystalline FeOOH acting concurrently as electron acceptors while serving as "conduits" to help itself stimulate degradation and methanogenesis. The main source of geogenic P enriched by these two different coupled processes is different: the former is P-containing OM, which mainly contained unsaturated aliphatic compounds and highly unsaturated-low O compounds, and the latter is P associated with crystalline FeOOH. In addition, geological setting affects the deposition rate of sediments, which can alter OM degradation/preservation, and subsequently affects geochemical conditions of geogenic P occurrence. These findings provide new evidence and perspectives for understanding the hydro(bio)geochemical processes controlling geogenic P enrichment in alluvial-lacustrine aquifer systems.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Fósforo , Poluentes Químicos da Água/análise , Água Subterrânea/química , Óxidos , Monitoramento Ambiental , Sedimentos Geológicos/química
3.
Sci Total Environ ; 851(Pt 1): 158192, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988602

RESUMO

The exploitation of polymetallic deposits produces large amounts of mine drainage, which poses great challenges to the surrounding aquatic ecosystem. However, the prokaryotic microbial community assembly and co-existence patterns in the polluted area are poorly understood, especially in high-altitude localities. Herein, we investigated the prokaryotic microbial assembly, co-existence patterns and their potential functional responses in surrounding river sediments of a Cu-polymetallic deposit in Tibet. The sediments from mine drainage and surrounding tributaries exhibited distinct geochemical gradients, especially the changes in Cu content. The microbial community structure changed significantly, accompanied by decreased richness and diversity with increased Cu content. Interestingly, the relative abundances of some potential functional bacteria (e.g., Planctomycetota) actually increased as the Cu levels raised. In low contaminated area, ecological drift was the most important assembly process, whereas deterministic processes gained importance with pollution levels. Meanwhile, negative interactions in co-occurrence networks were more frequent with higher modularity and reduced keystone taxa in high contaminated area. Notably, the functions related to ABC transporters and quorum sensing (QS) were more abundant with high Cu content, which helped bacteria work together to cope with the stressful environment. Taken together, the physicochemical gradients dominated by Cu content drove the distribution, assembly and co-existence patterns of microbial communities in surrounding river sediments of a Cu-polymetallic deposit. These findings provide new insights into the maintenance mechanisms of prokaryotic microbial communities in response to heavy metal stress at high altitudes.


Assuntos
Metais Pesados , Microbiota , Transportadores de Cassetes de Ligação de ATP , Bactérias , Sedimentos Geológicos/química , Metais Pesados/análise , Rios/química , Tibet
4.
J Hazard Mater ; 439: 129636, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35908398

RESUMO

Iron (Fe)-modified biochar (FeBC) has been developed to remove hexavalent chromium (Cr(VI)) from groundwater and is suitable for use in permeable reactive barriers (PRBs). However, Cr(VI) removal behavior and chemical processes in FeBC-based PRBs are not fully understood, and the potential for Fe release has not been addressed. In this study, three FeBC-based PRBs were assessed in column experiments for 563 days with respect to their ability to remove Cr(VI). Bilayer column filled with FeBC+limestone and BC+limestone in two separate layers (FeBC_Ca_BC) showed the best performance in terms of Cr(VI) removal with a low treatment cost. The corrosion of FeBC was mainly related to pH and Cr(VI) concentration rather than flow rate. Leached Fe was attenuated by BC and limestone and reutilized in FeBC_Ca_BC. Cr(VI) was reduced to Cr(III) and then adsorbed or precipitated on the biochars. Cr and Fe formed inner-sphere complexes and then transformed from double corner sharing to edge sharing. During the reaction, Cr penetrated from the surface to the interior of the biochars and became a more stable species. This study provides evidence of the effectiveness of a new combination of biochars for Cr(VI) removal and insights into the reaction mechanisms.


Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Carbonato de Cálcio , Carvão Vegetal/química , Cromo/química , Ferro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...