Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Lab Med ; 9(2): 350-356, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180079

RESUMO

BACKGROUND: Examination of urine by immunofixation electrophoresis (UIFE) is one of the tests recommended for screening and monitoring of monoclonal gammopathies, especially multiple myeloma. Unlike the serum free light chain measurement, a positive result on urine immunofixation is diagnostic for monoclonal immunoglobulin light chains. Urine is usually concentrated, generally by membrane filtration, prior to electrophoresis. METHODS: Alternative methods to membrane filtration for urine concentration were examined. Residual urine specimens submitted for urine protein electrophoresis were concentrated by precipitation of the proteins by ammonium sulfate salt precipitation, precipitation with ethanol and acetonitrile, and by desiccation. The concentrated specimens were subjected to immunofixation electrophoresis using antisera to free light chains (FLC). The results were compared with those from conventional immunofixation electrophoresis using specimens concentrated by membrane filtration. RESULTS: Ammonium sulfate, ethanol, and acetonitrile precipitation results were less than satisfactory. Concentration by desiccation provided results comparable, if not better than, those by membrane filtration and conventional UIFE. The cost of desiccation is minimal compared to more than $5.00/specimen cost of concentration by membrane filtration. The differences in the results with conventional UIFE and the method described here are likely due to (a) variability in the reactivity of different antisera to free monoclonal light chains, and (b) obscuration of monoclonal free light chains by co-migration with intact immunoglobulin monoclonal proteins. CONCLUSIONS: Concentrating urine by desiccation for immunofixation electrophoresis is technically simple, inexpensive, and provides results comparable to concentrating by membrane filtration. Using FLC provides a more sensitive assay than using conventional antisera.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Humanos , Sulfato de Amônio , Cadeias Leves de Imunoglobulina , Acetonitrilas , Etanol , Soros Imunes
2.
J Appl Lab Med ; 8(6): 1101-1114, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37725944

RESUMO

BACKGROUND: The serum-free immunoglobulin light chain assay has been recommended as a screening test for monoclonal gammopathy. We evaluated the usefulness of urine free immunoglobulin light concentration for selection of specimens for immunofixation electrophoresis. METHODS: Using kits from The Binding Site for Freelite ®, we validated examination of urine for measuring free κ and λ light chains. The results of urine free light chain concentrations were evaluated to ascertain if the results could be used to reduce the number of specimens requiring urine protein immunofixation electrophoresis. RESULTS: In the 515 specimens examined, there was no evidence of monoclonal gammopathy or history of monoclonal gammopathy in 331. Monoclonal κ or λ light chains were detectable in 42 and 30 specimens, respectively. There was history of κ or λ chain associated monoclonal gammopathy in 62 and 50 patients, respectively. In the 38 monoclonal κ positive urine specimens, with light chain data, κ/λ ratio was >5.83 in all specimens. In 27 specimens positive for monoclonal λ light chains, with light chain data, the urine λ/κ ratio was > 0.17 in 24 of 27 specimens and > 0.041 in all specimens. In patients without monoclonal gammopathy all specimens had a κ/λ ratio of >5.83 or λ/κ ratio >0.17. CONCLUSIONS: The Freelite ® assay from The Binding Site is suitable for quantification of free light chains in urine. In patients with known history of monoclonal gammopathy, urine immunofixation electrophoresis may be omitted in specimens with κ/λ ratio of <5.83 for κ associated lesions and λ/κ ratio of <0.041 for λ associated lesions. However, the results do not support using this test for first-time urine testing for monoclonal light chains as it is not predictive of positive result, nor does it exclude a monoclonal light chain in urine.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Paraproteinemias , Humanos , Cadeias Leves de Imunoglobulina/urina , Paraproteinemias/diagnóstico , Cadeias lambda de Imunoglobulina , Eletroforese/métodos
3.
Biomedicines ; 11(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37509624

RESUMO

NF-κB signaling has broad effects on cell survival, tissue growth, and proliferation activities. It controls many genes that are involved in inflammation and thus is a key player in many inflammatory diseases. The elevation of NF-κB activators is associated with elevated mortality, especially in cancer and cardiovascular diseases. The zebrafish has emerged as an important model for whole-organism in vivo modeling in translational research. In vertebrates, in-vivo spatial resolution is limited due to normal opacification of skin and subdermal structure. For in vivo imaging, skin transparency by blocking the pigmentation via chemical inhibition is required and the maintenance of this transparency is vital. The Casper(roy-/-, nacre-/-) mutant of zebrafish maintains this transparency throughout its life and serves as an ideal combination of sensitivity and resolution for in vivo stem cell analyses and imaging. We developed an NF-kB:GFP/Casper transparent transgenic zebrafish cellular phenotype to study inflammatory processes in vivo. We outline the experimental setup to generate a transparent transgenic NF-kB/Casper strain of zebrafish through the cross-breeding of Casper and NF-kB transgenic adult fish and have generated F01 in the form of heterozygous progeny. The transgenic F01 progeny was further inbred to generate heterozygous progenies from F1 to F4 generations. Furthermore, it continued to successfully develop the homozygous strain Tg(6xNF-kB:EGFP); Casper(roy-/-, nacre-/-) in the F05 generation. This novel strain of F05 generation showed 100% homozygosity in the transgenic transparent progeny of Tg(6xNF-kB:EGFP); Casper(roy-/-, nacre-/-). The strain has been confirmed by generating the F06 generation of homozygous progeny and again verified and validated for its homogeneity in the F07 generation. The newly developed novel transparent transgenic strain of the NF-kB reporter line has been coined as "Tg(6xNF-kB:EGFP); Casper(roy-/-, nacre-/-)gmc1". We have established a newly generated phenotype of transparent transgenic zebrafish for time-lapse in vivo confocal microscopy to study the cellular phenotype and pathologies at the cellular level over time. This will allow for quantifying the changes in the NF-kB functional activities over time and allow the comparison of control and cardiac-oncology experimental therapeutics. We validated the newly developed Tg(6xNF-kB:EGFP); Casper(roy-/-, nacre-/-)gmc1 homozygous strain of zebrafish by studying the inflammatory response to bacterial lipopolysaccharide (LPS) exposure, tolerance, and the inhibitory role of a potential novel drug candidate against LPS-induced inflammation. The results establish the unique application of newly developed strains by identifying hit and lead drug candidates for experimental therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...