Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Transl Oncol ; 46: 102009, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833783

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer worldwide. Connexin is a transmembrane protein involved in gap junctions (GJs) formation. Our previous study found that connexin 37 (Cx37), encoded by gap junction protein alpha 4 (GJA4), expressed on fibroblasts acts as a promoter of CRC and is closely related to epithelial-mesenchymal transition (EMT) and tumor immune microenvironment. However, to date, the mechanism concerning the malignancy of GJA4 in tumor stroma has not been studied. METHODS: Hematoxylin-eosin (HE) and immunohistochemical (IHC) staining were used to validate the expression and localization of GJA4. Using single-cell analysis, enrichment analysis, spatial transcriptomics, immunofluorescence staining (IF), Sirius red staining, wound healing and transwell assays, western blotting (WB), Cell Counting Kit-8 (CCK8) assay and in vivo experiments, we investigated the possible mechanisms of GJA4 in promoting CRC. RESULTS: We discovered that in CRC, GJA4 on fibroblasts is involved in promoting fibroblast activation and promoting EMT through a fibroblast-dependent pathway. Furthermore, GJA4 may act synergistically with M2 macrophages to limit T cell infiltration by stimulating the formation of an immune-excluded desmoplasic barrier. Finally, we found a significantly correlation between GJA4 and pathological staging (P < 0.0001) or D2 dimer (R = 0.03, P < 0.05). CONCLUSION: We have identified GJA4 expressed on fibroblasts is actually a promoter of the tumor mesenchymal phenotype. Our findings suggest that the interaction between GJA4+ fibroblasts and M2 macrophages may be an effective target for enhancing tumor immunotherapy.

2.
Burns Trauma ; 12: tkae016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882552

RESUMO

Background: Platelets play a critical role in hemostasis and inflammatory diseases. Low platelet count and activity have been reported to be associated with unfavorable prognosis. This study aims to explore the relationship between dynamics in platelet count and in-hospital morality among septic patients and to provide real-time updates on mortality risk to achieve dynamic prediction. Methods: We conducted a multi-cohort, retrospective, observational study that encompasses data on septic patients in the eICU Collaborative Research Database (eICU-CRD) and the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The joint latent class model (JLCM) was utilized to identify heterogenous platelet count trajectories over time among septic patients. We assessed the association between different trajectory patterns and 28-day in-hospital mortality using a piecewise Cox hazard model within each trajectory. We evaluated the performance of our dynamic prediction model through area under the receiver operating characteristic curve, concordance index (C-index), accuracy, sensitivity, and specificity calculated at predefined time points. Results: Four subgroups of platelet count trajectories were identified that correspond to distinct in-hospital mortality risk. Including platelet count did not significantly enhance prediction accuracy at early stages (day 1 C-indexDynamic  vs C-indexWeibull: 0.713 vs 0.714). However, our model showed superior performance to the static survival model over time (day 14 C-indexDynamic  vs C-indexWeibull: 0.644 vs 0.617). Conclusions: For septic patients in an intensive care unit, the rapid decline in platelet counts is a critical prognostic factor, and serial platelet measures are associated with prognosis.

3.
J Phys Condens Matter ; 36(36)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38830373

RESUMO

Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is found in the InSe nanoribbon with zigzag edge type. In contrast to the zigzag InSe nanoribbon, a singular electronic state termed as bulk-surface is observed along with the normal bulk and edge electronic states in the armchair InSe nanoribbons. Moreover, the band gap, the transversal electron probability distributions in the two sublayers, and the electronic state of the topmost valence subband can be manipulated by adding a perpendicular electric field to the InSe nanoribbon. Further study shows that the charge conductance of the two-terminal monolayer InSe nanoribbons can be switched on or off by varying the electric field strength. In addition, the transport of the bulk electronic state is delicate to even a weak disorder strength, however, that of the edge and edge-surface electronic states shows a strong robustness against to the disorders. These findings may be helpful to understand the electronic characteristics of the InSe nanostructures and broaden their potential applications in two-dimensional nanoelectronic devices as well.

4.
J Transl Med ; 22(1): 549, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849852

RESUMO

Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we investigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvironment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential oncogenic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhibited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits the Epithelial-mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.


Assuntos
Fibroblastos Associados a Câncer , Comunicação Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Animais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , Junções Comunicantes/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Análise Espaço-Temporal , Junções Íntimas/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo
5.
ACS Appl Mater Interfaces ; 16(23): 30453-30461, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832492

RESUMO

Hydrogels are ideal for antifouling materials due to their high hydrophilicity and low adhesion properties. Herein, poly(ionic liquid) hydrogels integrated with zwitterionic copolymer-functionalized gallium-based liquid metal (PMPC-GLM) microgels were successfully prepared by a one-pot reaction. Poly(ionic liquid) hydrogels (IL-Gel) were obtained by chemical cross-linking the copolymer of ionic liquid, acrylic acid, and acrylamide, and the introduction of ionic liquid (IL) significantly increased the cross-linking density; this approach consequently enhanced the mechanical and antiswelling properties of the hydrogels. The swelling ratio of IL-Gel decreased eight times compared to the original hydrogels. PMPC-GLM microgels were prepared through grafting the zwitterionic polymer PMPC onto the GLM nanodroplet surface, which exhibited efficient antifouling performance attributed to the bactericidal effect of Ga3+ and the antibacterial effect of the zwitterionic polymer layer PMPC. Based on the synergistic effect of PMPC-GLM microgels and IL, the composite hydrogels PMPC-GLM@IL-Gel not only exhibited excellent mechanical and antiswelling properties but also showed outstanding antibacterial and antifouling properties. Consequently, PMPC-GLM@IL-Gel hydrogels achieved inhibition rates of over 90% against bacteria and more than 85% against microalgae.

6.
Cytokine ; 180: 156672, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852492

RESUMO

BACKGROUND: Despite recent advances in therapeutic regimens, the prognosis of acute myeloid leukemia (AML) remains poor. Following our previous finding that interleukin-33 (IL-33) promotes cell survival along with activated NF-κB in AML, we further investigated the role of NF-κB during leukemia development. METHODS: Flow cytometry was performed to value the apoptosis and proliferation. qRT-PCR and western blot were performed to detect the expression of IL-6, active caspase 3, BIRC2, Bcl-2, and Bax, as well as activated NF-κB p65 and AKT. Finally, xenograft mouse models and AML patient samples were used to verify the findings observed in AML cell lines. RESULTS: IL-33-mediated NF-κB activation in AML cell lines contributes to a reduction in apoptosis, an increase in proliferation rate as well as a decrease in drug sensitivity, which were reversed by NF-κB inhibitor, Bay-117085. Moreover, IL-33 decreased the expression of active caspase-3 while increasing the levels of BIRC2, Bcl-2, and Bax, and these effects were blocked by Bay-117085. Additionally, NF-κB activation induced by IL-33 increases the production of IL-6 and autocrine activation of AKT. Co-culture of bone marrow stroma with AML cells resulted in increased IL-33 expression by leukemia cells, along with decreased apoptosis level and reduced drug sensitivity. Finally, we confirmed the in vivo pro-tumor effect mediated by IL-33/ NF-κB axis using a xenograft model of AML. CONCLUSION: Our data indicate that IL-33/IL1RL1-dependent signaling contributes to AML cell activation of NF-κB, which in turn causes autocrine IL-6-induced activation of pAKT, supporting IL-33/NF-κB/pAKT as a potential target for AML therapy.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Interleucina-33 , Leucemia Mieloide Aguda , NF-kappa B , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Apoptose/efeitos dos fármacos , NF-kappa B/metabolismo , Animais , Interleucina-33/metabolismo , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Transdução de Sinais/efeitos dos fármacos , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Front Neurorobot ; 18: 1374531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911604

RESUMO

The quaternion cubature Kalman filter (QCKF) algorithm has emerged as a prominent nonlinear filter algorithm and has found extensive applications in the field of GNSS/SINS integrated attitude determination and positioning system (GNSS/SINS-IADPS) data processing for unmanned aerial vehicles (UAV). However, on one hand, the QCKF algorithm is predicated on the assumption that the random model of filter algorithm, which follows a white Gaussian noise distribution. The noise in actual GNSS/SINS-IADPS is not the white Gaussian noise but rather a ubiquitous non-Gaussian noise. On the other hand, the use of quaternions as state variables is bound by normalization constraints. When applied directly in nonlinear non-Gaussian system without considering normalization constraints, the QCKF algorithm may result in a mismatch phenomenon in the filtering random model, potentially resulting in a decline in estimation accuracy. To address this issue, we propose a novel Gaussian sum quaternion constrained cubature Kalman filter (GSQCCKF) algorithm. This algorithm refines the random model of the QCKF by approximating non-Gaussian noise with a Gaussian mixture model. Meanwhile, to account for quaternion normalization in attitude determination, a two-step projection method is employed to constrain the quaternion, which consequently enhances the filtering estimation accuracy. Simulation and experimental analyses demonstrate that the proposed GSQCCKF algorithm significantly improves accuracy and adaptability in GNSS/SINS-IADPS data processing under non-Gaussian noise conditions for Unmanned Aerial Vehicles (UAVs).

8.
Infect Drug Resist ; 17: 2485-2499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915321

RESUMO

Objective: To preliminarily assess the prevalence and control effect of tuberculosis and drug-resistant tuberculosis (TB) in Anhui province, and analyze the trends in the changing drug resistance spectrum of Mycobacterium tuberculosis (Mtb) isolated in Anhui province from 2016 to 2022. Methods: From 2016 to 2022, a total of 2336 culture-positive tuberculosis strains were collected from four drug resistance monitoring sites. Patient demographic information was collected and drug susceptibility testing was conducted. Results: Among the 2336 Mycobacterium tuberculosis complex strains, 1788 (76.54%) were from male patients and 548 (23.46%) were from female patients. The majority were of Han ethnicity, from rural areas, and employed in agriculture, with 12.54% (285/2273) having diabetes. A total of 1893 (81.04%) strains were sensitive to all six anti-TB drugs tested, and 443 (18.96%) strains were resistant to at least one or more anti-TB drugs. The drug resistance rate for patients undergoing initial treatment was 16.80% (348/2071), and 35.85% (95/265) for those receiving retreatment. Among the six anti-TB drugs, the resistance rates from highest to lowest were: INH (10.55%, 236/2336), SM (8.18%, 183/2336), OFX (6.53%, 146/2336), RFP (5.95%, 133/2336), EMB (2.37%, 53/2336), KM (1.97%, 44/2336). Significant differences were observed in MDR strains across different ages, types, with or without diabetes, and geographical sources (χ2=14.895,76.534,6.032,5.109, all P<0.05). Conclusion: The tuberculosis prevention and control measures have controlled the drug resistance rate of Mycobacterium tuberculosis to a certain extent. However, there are still statistical differences in drug resistance rates among TB patients with different categories, age groups, regions, and diabetic diseases. Early detection and prompt treatment of patients with drug-resistant TB remain critical to controlling the spread of this disease.

9.
J Transl Med ; 22(1): 580, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898490

RESUMO

The importance of the immune microenvironment in poorly cohesive carcinoma (PCC) has been highlighted due to its limited response rate to conventional therapy and emerging treatment resistance. A combination of clinical cohorts, bioinformatics analyses, and functional/molecular experiments revealed that high infiltration of Interferon Induced Protein with Tetratricopeptide Repeats 1 (IFIT1) + tumor-associated neutrophils (TANs) is a distinguishing feature of PCC patients. Upregulation of IFIT1 + TANs promote migration and invasion of gastric cancer (GC) cell lines (MKN45 and MKN74) and stimulates the growth of cell-derived xenograft models. Besides, by promoting macrophage secreted phosphoprotein 1 (SPP1) expression and facilitating cancer-associated fibroblast and endothelial cell recruitment and activation through TANs, IFIT1 promotes a mesenchymal phenotype, which is associated with a poor prognosis. Importantly, compared to non-PCC (NPCC), PCC tumors is more immunosuppressive. Mechanistically, IFIT1 can be stimulated by IFN-γ and contributes to the expression of Programmed Cell Death 1 Ligand (PDL1) in TANs. We demonstrated in mouse models that IFIT1 + PDL1 + TANs can induce acquired resistance to anti-PD-1 immunotherapy, which may be responsible for the difficulty of PCC patients to benefit from immunotherapy. This work highlights the role of IFIT1 + TANs in mediating the remodeling of the tumor immune microenvironment and immunotherapeutic resistance and introduces IFIT1 + TANs as a promising target for precision therapy of PCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neutrófilos , Proteínas de Ligação a RNA , Humanos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Microambiente Tumoral/imunologia , Feminino , Antígeno B7-H1/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/imunologia , Masculino , Camundongos , Resistencia a Medicamentos Antineoplásicos , Movimento Celular , Tolerância Imunológica , Terapia de Imunossupressão , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Camundongos Nus , Imunoterapia , Pessoa de Meia-Idade
10.
Artigo em Inglês | MEDLINE | ID: mdl-38821676

RESUMO

N-Nitrosamines, known as drug impurities and suspected carcinogens, have drawn significant public concern. In response to drug regulatory needs, the European Medicines Agency (EMA) has previously proposed a carcinogenic potency categorization approach based on the N-nitrosamine α-hydroxylation hypothesis, i.e., that N-nitrosamine mutagenicity increases with the number of α-hydrogen atoms. However, this structure-activity relationship has not been fully tested in vivo. NEIPA (N-nitrosoethylisopropylamine) and NDIPA (N-nitrosodiisopropylamine) are small N-Nitrosamines with similar structures, differing in that the former compound has an additional α-hydrogen atom. In this study, NEIPA and NEIPA doses, 25-100 mg/kg, were administered orally to C57BL/6 J mice for seven consecutive days, and their mutation and DNA damage effects were compared. Compared with NDIPA, the mutagenicity and DNA damage potencies of NEIPA (which contains one more α-hydrogen) were much greater. These differences may be related to their distinct metabolic pathways and target organs. This case study confirms the role of α-hydroxyl modification in the mutagenicity of nitrosamines, with oxidation at the α-hydrogen being a crucial step in the formation of mutagens from N-Nitrosamines, and can inform mutagenicity risk assessment and the formulation of regulatory standards for N-nitrosamine impurities.


Assuntos
Dano ao DNA , Camundongos Endogâmicos C57BL , Testes de Mutagenicidade , Mutagênicos , Nitrosaminas , Animais , Camundongos , Nitrosaminas/toxicidade , Nitrosaminas/química , Testes de Mutagenicidade/métodos , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Masculino , Relação Estrutura-Atividade , Carcinógenos/toxicidade , Dietilnitrosamina/toxicidade , Dietilnitrosamina/análogos & derivados , Mutação/efeitos dos fármacos , Administração Oral
11.
Nanomicro Lett ; 16(1): 191, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700650

RESUMO

Low-temperature processed electron transport layer (ETL) of TiO2 that is widely used in planar perovskite solar cells (PSCs) has inherent low carrier mobility, resulting in insufficient photogenerated electron transport and thus recombination loss at buried interface. Herein, we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO2 ETL to accelerate electron transport in PSCs, through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude. Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO2 ETL, but the fabrication of perovskite films with larger-grain and the less-trap-states. The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs, favoring for the reduced voltage deficit of PSCs. Benefiting from these merits, the formamidinium lead iodide (FAPbI3) PSCs employing such ETLs deliver a champion efficiency of 25.50%, along with much-improved device stability under harsh conditions, i.e., maintain over 95% of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h, as well as mixed-cation PSCs with a champion efficiency of 22.02% and over 3000 h of ambient storage under humidity stability of 40%. Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics.

12.
Adv Healthc Mater ; : e2401093, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805724

RESUMO

Repairing larger defects (>5 mm) in peripheral nerve injuries (PNIs) remains a significant challenge when using traditional artificial nerve guidance conduits (NGCs). A novel approach that combines 4D printing technology with poly(L-lactide-co-trimethylene carbonate) (PLATMC) and Ti3C2Tx MXene nanosheets is proposed, thereby imparting shape memory properties to the NGCs. Upon body temperature activation, the printed sheet-like structure can quickly self-roll into a conduit-like structure, enabling optimal wrapping around nerve stumps. This design enhances nerve fixation and simplifies surgical procedures. Moreover, the integration of microchannel expertly crafted through 4D printing, along with the incorporation of MXene nanosheets, introduces electrical conductivity. This feature facilitates the guided and directional migration of nerve cells, rapidly accelerating the healing of the PNI. By leveraging these advanced technologies, the developed NGCs demonstrate remarkable potential in promoting peripheral nerve regeneration, leading to substantial improvements in muscle morphology and restored sciatic nerve function, comparable to outcomes achieved through autogenous nerve transplantation.

13.
Small ; : e2400570, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600895

RESUMO

Lithium (Li) metal batteries are deemed as promising next-generation power solutions but are hindered by the uncontrolled dendrite growth and infinite volume change of Li anodes. The extensively studied 3D scaffolds as solutions generally lead to undesired "top-growth" of Li due to their high electrical conductivity and the lack of ion-transporting pathways. Here, by reducing electrical conductivity and increasing the ionic conductivity of the scaffold, the deposition spot of Li to the bottom of the scaffold can be regulated, thus resulting in a safe bottom-up plating mode of the Li and dendrite-free Li deposition. The resulting symmetrical cells with these scaffolds, despite with a limited pre-plated Li capacity of 5 mAh cm-2, exhibit ultra-stable Li plating/stripping for over 1 year (11 000 h) at a high current density of 3 mA cm-2 and a high areal capacity of 3 mAh cm-2. Moreover, the full cells with these scaffolds further demonstrate high cycling stability under challenging conditions, including high cathode loading of 21.6 mg cm-2, low negative-to-positive ratio of 1.6, and limited electrolyte-to-capacity ratio of 4.2 g Ah-1.

14.
Langmuir ; 40(17): 8992-9000, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38634657

RESUMO

The present study utilizes styrene as a raw material to prepare hyper-cross-linked polystyrene nanospheres (HPSs) through the Friedel-Crafts reaction, establishing stable covalent bond structures within the polymer chains. The hydrophilic polystyrene nanospheres─TMA@SHPSs were successfully synthesized via sulfonation and ion exchange reactions, demonstrating exceptional properties in reducing friction and wear. Compared with pure water, the addition of 4.0 wt % TMA@SHPSs results in a 62.2% reduction in the friction coefficient, accompanied by a significant decrease to 1.17 × 105 µm3 in wear volume. The results demonstrate that TMA@SHPSs, as water-based lubrication additives, generate composite protective films (tribo-chemical protective films and physical protective films) during the friction process, which effectively prevents direct contact between the friction pairs and achieves remarkable antifriction and antiwear effects. The results of the antimicrobial activity test indicate that TMA@SHPSs demonstrate exceptional antibacterial efficacy due to the bacteriostatic effect induced by hydration and the bactericidal properties of quaternary ammonium cations.

15.
ACS Appl Mater Interfaces ; 16(17): 21965-21974, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646891

RESUMO

The metal oxide electron transport layers (ETLs) with flat morphology and high electrical quality are essential to manufacture highly efficient perovskite solar cells (PSCs), in which the regulation of the metal oxide deposition process plays a crucial role. Herein, a judiciously designed dopamine sulfonate (DS) ligand-assisted deposition of titanium dioxide (TiO2) films approach is implemented based on electrostatic repulsion and steric hindrance of assembled ligands to improve colloidal nanoparticles dispersity in precursor and effectively inhibit their aggregation, which could enable obtaining smooth topography of TiO2 films and initiating growth of top high-quality perovskite films. Furthermore, sulfonate bridges bonded on the perovskite buried layer that is beneficial to form better buried interface contact and accelerate electron extraction. As a result, the PSCs employing DS/TiO2 ETLs exhibit the best power conversion efficiency of 24.53% with impressive storage stability and operation stability, i.e., remaining more than 88% of their initial efficiency upon storage N2 glovebox without encapsulation over 4000 h, and the efficiency does not attenuate significantly under maximum power point for 60 h.

17.
Angew Chem Int Ed Engl ; 63(23): e202403415, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38573437

RESUMO

Metal-backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear-induced orientation method to construct a flexible nickel-backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 µW ⋅m-1 K-2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply.

18.
Am J Trop Med Hyg ; 110(4): 805-808, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471180

RESUMO

Tuberculous gumma (TG) is a rare type of cutaneous tuberculosis thought to occur as a result of the hematogenous spread of Mycobacterium tuberculosis, which is more common in immunosuppressed individuals. An 8-year-old boy presented with a 2-month history of multiple indolent enlarging ulcerated nodules on his left upper extremity. He had a past medical history of bacille Calmette-Guerin vaccine induced lupus vulgaris. Skin biopsy of the nodules showed granulomas and neutrophil-dominated purulent inflammation. Ziehl-Neelsen staining was negative, and the cultures were positive for M. tuberculosis. Furthermore, the M. tuberculosis complex was identified using metagenomic next-generation sequencing. Standard antitubercular therapy was started at full doses, and the skin lesions had significantly improved 3 months later. Here we review the literature since 2000 and describe the clinical and pathological features of TG.


Assuntos
Lúpus Vulgar , Mycobacterium tuberculosis , Tuberculose Cutânea , Masculino , Humanos , Criança , Tuberculose Cutânea/diagnóstico , Tuberculose Cutânea/tratamento farmacológico , Lúpus Vulgar/patologia , Antituberculosos/uso terapêutico , Pele/patologia
19.
Vaccines (Basel) ; 12(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38543921

RESUMO

Compared with the traditional vaccine produced in embryonated chicken eggs, cell-based manufacturing represented by the Madin-Darby canine kidney (MDCK) cell line has a larger production scale and reduces the risk of egg shortage in a pandemic. Establishing a culture system that enables high production of the influenza virus is a key issue in influenza vaccine production. Here, a serum-free suspension culture of MDCK (sMDCK) cells was obtained from adherent MDCK (aMDCK) cells by direct adaptation. Viral infection experiments showed that viral yields of influenza A/B virus in sMDCK cells were higher than in aMDCK cells. Transcriptome analysis revealed that numerous interferon-stimulated genes (ISGs) exhibited reduced expression in sMDCK cells. To further clarify the mechanism of high viral production in sMDCK cells, we demonstrated the antiviral role of RIG-I and IFIT3 in MDCK cells by knockdown and overexpression experiments. Furthermore, suppression of the JAK/STAT pathway enhances the viral accumulation in aMDCK cells instead of sMDCK cells, suggesting the reduction in the JAK/STAT pathway and ISGs promotes viral replication in sMDCK cells. Taken together, we elucidate the relationship between the host innate immune response and the high viral productive property of sMDCK cells, which helps optimize cell production processes and supports the production of cell-based influenza vaccines.

20.
Biotechnol J ; 19(3): e2400063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528344

RESUMO

The effective design of perfusion cell culture is currently challenging regarding balancing the operating parameters associated with the hydrodynamic conditions due to increased system complexity. To address this issue, cellular responses of an industrial CHO cell line to different types of hydrodynamic stress in benchtop perfusion bioreactors originating from agitation, sparging, and hollow fibers (HF) in the cell retention devices were systematically investigated here with the analysis of cell lysis. It was found that cell lysis was very common and most associated with the sparging stress, followed by the HF and lastly the agitation, consequently heavily impacting the estimation of process descriptors related to biomass. The results indicated that the agitation stress led to a reduced cell growth with a shift toward a more productive phenotype, suggesting an energy redirection from biomass formation to product synthesis, whereas the sparging stress had a small impact on the intracellular metabolic flux distribution but increased the cell death rate drastically. For HF stress, a similar cell maintenance profile was found as the sparging while the activity of glycolysis and the TCA cycle was significantly impeded, potentially leading to the lack of energy and thus a substantial decrease in cell-specific productivity. Moreover, a novel concept of volume average shear stress was developed to further understand the relations of different types of stress and the observed responses for an improved insight for the perfusion cell culture.


Assuntos
Reatores Biológicos , Hidrodinâmica , Cricetinae , Animais , Técnicas de Cultura de Células/métodos , Células CHO , Cricetulus , Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...