Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 84(1): 013904, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23387665

RESUMO

The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 ± 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

2.
Rev Sci Instrum ; 83(7): 073903, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22852700

RESUMO

The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (∼2 µm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

3.
J Colloid Interface Sci ; 352(2): 535-41, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20875644

RESUMO

Adhesion between binders and explosive crystals is of critical importance for the mechanical performance of plastic-bonded explosives (PBXs). The surface properties of several prospective binders have been determined from static advancing contact angle measurements. The surface energies have been used to calculate theoretical work of adhesion to 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a common insensitive high explosive. The fluorinated terpolymer Oxy-461™, and Kel-F™ chlorotrifluoroethylene-vinylidene fluoride copolymers show the greatest potential for wetting TATB surfaces, and should promote the best adhesion to TATB in PBX formulations. In general, none of the fluoropolymer binders investigated here exhibit markedly superior adhesion to TATB. Thus, bulk physical properties are likely to be more important when choosing a binder.


Assuntos
Polímeros de Fluorcarboneto/química , Trinitrobenzenos/química , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Modelos Moleculares , Tamanho da Partícula , Propriedades de Superfície , Termodinâmica
4.
Connect Tissue Res ; 34(1): 33-9, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8835846

RESUMO

Extracellular matrix development of chicken pectoral muscle was examined in the Low Score Normal (LSN) genetic muscle weakness and compared to both normal and avian muscular dystrophy (MD). At 20 days of embryonic development significant elevations were noted in LSN total glycosaminoglycan concentration and decorin, while at 14 days, LSN glycosaminoglycan and decorin levels were indistinguishable from the controls. Levels of a large skeletal muscle chondroitin sulfate proteoglycan (M-CSPG) appear to be unaffected. Morphologically, at 20 days, the extracellular matrix space between muscle fibers increased to a level characteristic to that observed in avian muscular dystrophy. At six weeks posthatch a marked increase in LSN collagen crosslinking relative to MD or control tissues was observed, while collagen concentration was not altered. By one year posthatch LSN collagen crosslink levels did not significantly differ from normal tissue. These data support the concept that the LSN muscle weakness is associated with changes in both proteoglycan and collagen characteristics.


Assuntos
Colágeno/metabolismo , Distrofia Muscular Animal/metabolismo , Músculos Peitorais/metabolismo , Proteoglicanas/metabolismo , Animais , Aves , Embrião de Galinha , Galinhas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Reagentes de Ligações Cruzadas , Decorina , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular , Feminino , Glicosaminoglicanos/metabolismo , Masculino , Debilidade Muscular , Músculos Peitorais/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...