Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(26): e2319623121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889142

RESUMO

Solid organ transplantation mobilizes myeloid cells, including monocytes and macrophages, which are central protagonists of allograft rejection. However, myeloid cells can also be functionally reprogrammed by perioperative costimulatory blockade to promote a state of transplantation tolerance. Transplantation tolerance holds promise to reduce complications from chronic immunosuppression and promote long-term survival in transplant recipients. We sought to identify different mediators of transplantation tolerance by performing single-cell RNA sequencing of acute rejecting or tolerized cardiac allografts. This led to the unbiased identification of the transcription factor, hypoxia inducible factor (HIF)-2α, in a subset of tolerogenic monocytes. Using flow cytometric analyses and mice with conditional loss or gain of function, we uncovered that myeloid cell expression of HIF-2α was required for costimulatory blockade-induced transplantation tolerance. While HIF-2α was dispensable for mobilization of tolerogenic monocytes, which were sourced in part from the spleen, it promoted the expression of colony stimulating factor 1 receptor (CSF1R). CSF1R mediates monocyte differentiation into tolerogenic macrophages and was found to be a direct transcriptional target of HIF-2α in splenic monocytes. Administration of the HIF stabilizer, roxadustat, within micelles to target myeloid cells, increased HIF-2α in splenic monocytes, which was associated with increased CSF1R expression and enhanced cardiac allograft survival. These data support further exploration of HIF-2α activation in myeloid cells as a therapeutic strategy for transplantation tolerance.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Transplante de Coração , Macrófagos , Monócitos , Tolerância ao Transplante , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Tolerância ao Transplante/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Rejeição de Enxerto/genética , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Masculino
2.
Sci Rep ; 12(1): 7298, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508582

RESUMO

Recipients of solid organ transplantation (SOT) rely on life-long immunosuppression (IS), which is associated with significant side effects. Extracorporeal photochemotherapy (ECP) is a safe, existing cellular therapy used to treat transplant rejection by modulating the recipient's own blood cells. We sought to induce donor-specific hypo-responsiveness of SOT recipients by infusing ECP-treated donor leukocytes prior to transplant. To this end, we utilized major histocompatibility complex mismatched rodent models of allogeneic cardiac, liver, and kidney transplantation to test this novel strategy. Leukocytes isolated from donor-matched spleens for ECP treatment (ECP-DL) were infused into transplant recipients seven days prior to SOT. Pre-transplant infusion of ECP-DL without additional IS was associated with prolonged graft survival in all models. This innovative approach promoted the production of tolerogenic dendritic cells and regulatory T-cells with subsequent inhibition of T-cell priming and differentiation, along with a significant reduction of donor-specific T-cells in the spleen and grafts of treated animals. This new application of donor-type ECP-treated leukocytes provides insight into the mechanisms behind ECP-induced immunoregulation and holds significant promise in the prevention of graft rejection and reduction in need of global immune suppressive therapy in patients following SOT.


Assuntos
Fotoferese , Aloenxertos , Animais , Modelos Animais de Doenças , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Humanos , Camundongos , Linfócitos T Reguladores , Transplante Homólogo
3.
Kidney Int ; 98(6): 1489-1501, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32822703

RESUMO

Delayed graft function due to transplant ischemia/reperfusion injury adversely affects up to 50% of deceased-donor kidney transplant recipients. However, key factors contributing to the severity of ischemia/reperfusion injury remain unclear. Here, using a clinically relevant mouse model of delayed graft function, we demonstrated that donor genetic background and kidney-intrinsic MyD88/Trif-dependent innate immunity were key determinants of delayed graft function. Functional deterioration of kidney grafts directly corresponded with the duration of cold ischemia time. The graft dysfunction became irreversible after cold ischemia time exceeded six hours. When cold ischemia time reached four hours, kidney grafts displayed histological features reflective of delayed graft function seen in clinical kidney transplantation. Notably, kidneys of B6 mice exhibited significantly more severe histological and functional impairment than kidneys of C3H or BALB/c mice, regardless of recipient strains or alloreactivities. Furthermore, allografts of B6 mice also showed an upregulation of IL-6, neutrophil gelatinase-associated lipocalin, and endoplasmic reticulum stress genes, as well as an increased influx of host neutrophils and memory CD8 T-cells. In contrast, donor MyD88/Trif deficiency inhibited neutrophil influx and decreased the expression of IL-6 and endoplasmic reticulum stress genes, along with improved graft function and prolonged allograft survival. Thus, kidney-intrinsic factors involving genetic characteristics and innate immunity serve as critical determinants of the severity of delayed graft function. This preclinical murine model allows for further investigations of the mechanisms underlying delayed graft function.


Assuntos
Função Retardada do Enxerto , Traumatismo por Reperfusão , Animais , Função Retardada do Enxerto/genética , Modelos Animais de Doenças , Sobrevivência de Enxerto , Isquemia , Rim , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Traumatismo por Reperfusão/genética
4.
Physiol Rep ; 8(10): e14446, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32441483

RESUMO

There are limited murine models of cholestatic liver diseases characterized by chronic biliary obstruction and resumption of bile flow. While murine bile duct ligation (BDL) is a well-established model of obstructive cholestasis, current models of BDL reversal (BDLR) alter biliary anatomy. We aimed to develop a more physiologic model of BDLR to evaluate the time course and mechanism for resolution of hepatic injury after biliary obstruction. In the present study, we restored bile flow into the duodenum without disruption of the gall bladder after murine BDL using biocompatible PE-50 tubing. After establishing the technique, overall survival for BDLR at 7 or 14 days after BDL was 88%. Sham laparotomy was performed in control mice. Laboratory data, liver histology, and hepatic gene expression were compared among BDL, BDLR, and controls. Laboratory evidence of cholestatic liver injury was observed at day 7 after BDL and rapid improvement occurred within 48 hr of BDLR. After BDLR there was also enhanced gene expression for the bile acid transporter Abcb11, however, bile duct proliferation persisted. Assessment of the immune response showed increased gene and protein expression for the general immune cell marker Cd45 in BDLR versus BDL mice suggesting a reparative immune response after BDLR. In summary, we have established a novel murine model of BDLR that allows for the investigation into bile acid and immune pathways responsible for hepatic repair following obstructive cholestasis. Future studies with our model may identify targets for new therapies to improve outcome in pediatric and adult cholestatic liver disease.


Assuntos
Colestase/prevenção & controle , Hepatopatias/prevenção & controle , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Biomarcadores/metabolismo , Colestase/etiologia , Colestase/patologia , Modelos Animais de Doenças , Ligadura/métodos , Hepatopatias/etiologia , Hepatopatias/patologia , Masculino , Camundongos
5.
ACS Nano ; 14(2): 1682-1693, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31951368

RESUMO

Spherical nucleic acids (SNAs) are a class of nanomaterials with a structure defined by a radial distribution of densely packed, short DNA or RNA sequences around a nanoparticle core. This structure allows SNAs to rapidly enter mammalian cells, protects the displayed oligonucleotides from nuclease degradation, and enables co-delivery of other drug cargoes. Here, we investigate the biodistribution of liposomal spherical nucleic acid (LSNA) conjugates, SNA architectures formed from liposome templates and DNA modified with hydrophobic end groups (tails). We compared linear DNA with two types of LSNAs that differ only by the affinity of the modified DNA sequence for the liposome template. We use single-stranded DNA (ssDNA) terminated with either a low-affinity cholesterol tail (CHOL-LSNA) or a high-affinity diacylglycerol lipid tail (DPPE-LSNA). Both LSNA formulations, independent of DNA conjugation, reduce the inflammatory cytokine response to intravenously administered DNA. The difference in the affinity for the liposome template significantly affects DNA biodistribution. DNA from CHOL-LSNAs accumulates in greater amounts in the lungs than DNA from DPPE-LSNAs. In contrast, DNA from DPPE-LSNAs exhibits greater accumulation in the kidneys. Flow cytometry and fluorescence microscopy of tissue sections indicate that different cell populations-immune and nonimmune-sequester the DNA depending upon the chemical makeup of the LSNA. Taken together, these data suggest that the chemical structure of the LSNAs represents an opportunity to direct the biodistribution of nucleic acids to major tissues outside of the liver.


Assuntos
Colesterol/farmacocinética , DNA/farmacocinética , Lipídeos/farmacocinética , Fígado/química , Animais , Colesterol/química , DNA/síntese química , DNA/química , Lipídeos/química , Lipossomos/química , Lipossomos/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície , Distribuição Tecidual
6.
Am J Physiol Heart Circ Physiol ; 318(1): H116-H123, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31809213

RESUMO

In humans, loss of central tolerance for the cardiac self-antigen α-myosin heavy chain (α-MHC) leads to circulation of cardiac autoreactive T cells and renders the heart susceptible to autoimmune attack after acute myocardial infarction (MI). MI triggers profound tissue damage, releasing danger signals and self-antigen by necrotic cardiomyocytes, which lead to recruitment of inflammatory monocytes. We hypothesized that excessive inflammation by monocytes contributes to the initiation of adaptive immune responses to cardiac self-antigen. Using an experimental model of MI in α-MHC-mCherry reporter mice, which specifically express mCherry in cardiomyocytes, we detected α-MHC antigen in myeloid cells in the heart-draining mediastinal lymph node (MLN) 7 days after MI. To test whether monocytes were required for cardiac self-antigen trafficking to the MLN, we blocked monocyte recruitment with a C-C motif chemokine receptor type 2 (CCR2) antagonist or immune modifying nanoparticles (IMP). Blockade of monocyte recruitment reduced α-MHC antigen detection in the MLN after MI. Intramyocardial injection of the model antigen ovalbumin into OT-II transgenic mice demonstrated the requirement for monocytes in antigen trafficking and T-cell activation in the MLN. Finally, in nonobese diabetic mice, which are prone to postinfarction autoimmunity, blockade of monocyte recruitment reduced α-MHC-specific responses leading to improved tissue repair and ventricular function 28 days after MI. Taken together, these data support a role for monocytes in the onset of pathological cardiac autoimmunity following MI and suggest that therapeutic targeting of monocytes may mitigate postinfarction autoimmunity in humans.NEW & NOTEWORTHY Our study newly identifies a role for inflammatory monocytes in priming an autoimmune T-cell response after myocardial infarction. Select inhibition of monocyte recruitment to the infarct prevents trafficking of cardiac self-antigen and activation of cardiac myosin reactive T cells in the heart-draining lymph node. Therapeutic targeting of inflammatory monocytes may limit autoimmune responses to improve cardiac remodeling and preserve left ventricular function after myocardial infarction.


Assuntos
Imunidade Adaptativa , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Comunicação Celular , Ativação Linfocitária , Monócitos/imunologia , Infarto do Miocárdio/imunologia , Miocárdio/imunologia , Animais , Antígenos Ly/imunologia , Antígenos Ly/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Feminino , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Monócitos/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Cadeias Pesadas de Miosina/imunologia , Cadeias Pesadas de Miosina/metabolismo , Transdução de Sinais , Função Ventricular Esquerda , Remodelação Ventricular
7.
J Vis Exp ; (148)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31259895

RESUMO

The spleen is a unique lymphoid organ that plays a critical role in the homeostasis of the immune and hematopoietic systems. Patients that have undergone splenectomy regardless of precipitating causes are prone to develop an overwhelming post-splenectomy infection and experience increased risks of deep venous thrombosis and malignancies. Recently, epidemiological studies indicated that splenectomy might be associated with the occurrence of cardiovascular diseases, suggesting that physiological functions of the spleen have not yet been fully recognized. Here, we introduce a mouse model of vascularized heterotopic spleen transplantation, which not only can be utilized to study the function and behavioral activity of splenic immune cell subsets in different biologic processes, but also can be a powerful tool to test the therapeutic potential of spleen transplantation in certain diseases. The main surgical steps of this model include donor spleen harvest, the removal of recipient native spleen, and spleen graft revascularization. Using congenic mouse strains (e.g., mice with CD45.1/CD45.2 backgrounds), we observed that after syngeneic transplantation, both donor-derived splenic lymphocytes and myeloid cells migrated out of the graft as early as post-operative day 1, concomitant with the influx of multiple types of recipient cells, thus generating a unique chimera.  Despite relatively challenging techniques, this procedure can be performed with >90% success rate. This model allows tracking the fate, longevity, and function of splenocytes during steady state and in a disease setting following a spleen transplantation, thereby offering a great opportunity to discover the distinct role for spleen-derived immune cells in different disease processes.


Assuntos
Vasos Sanguíneos/fisiologia , Baço/citologia , Baço/imunologia , Transplante Heterotópico , Animais , Masculino , Camundongos , Baço/irrigação sanguínea , Baço/cirurgia , Esplenectomia
8.
Semin Immunopathol ; 40(6): 593-603, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30141073

RESUMO

Post-transplant immunosuppression has reduced the incidence of T cell-mediated acute rejection, yet long-term cardiac graft survival rates remain a challenge. An important determinant of chronic solid organ allograft complication is accelerated vascular disease of the transplanted graft. In the case of cardiac allograft vasculopathy (CAV), the precise cellular etiology remains inadequately understood; however, histologic evidence hints at the accumulation and activation of innate phagocytes as a causal contributing factor. This includes monocytes, macrophages, and immature dendritic cell subsets. In addition to crosstalk with adaptive T and B immune cells, myeloid phagocytes secrete paracrine signals that directly activate fibroblasts and vascular smooth muscle cells, both of which contribute to fibrous intimal thickening. Though maladaptive phagocyte functions may promote CAV, directed modulation of myeloid cell function, at the molecular level, holds promise for tolerance and prolonged cardiac graft function.


Assuntos
Transplante de Coração/efeitos adversos , Fagócitos/imunologia , Fagócitos/metabolismo , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Doença Aguda , Animais , Antígenos de Diferenciação/metabolismo , Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Comunicação Celular , Doença Crônica , Endocitose/imunologia , Rejeição de Enxerto/imunologia , Humanos , Hipóxia/imunologia , Hipóxia/metabolismo , Imunidade Inata , Isoantígenos/imunologia , Receptores Imunológicos/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Doenças Vasculares/patologia
9.
JACC Basic Transl Sci ; 2(4): 386-397, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28920097

RESUMO

Our data suggest that, after a myocardial infarction, integrin-associated protein CD47 on cardiac myocytes is elevated. In culture, increased CD47 on the surface of dying cardiomyocytes impairs phagocytic removal by immune cell macrophages. After myocardial ischemia and reperfusion, acute CD47 inhibition with blocking antibodies enhanced dead myocyte clearance by cardiac phagocytes and also improved the resolution of cardiac inflammation, reduced infarct size, and preserved cardiac contractile function. Early targeting of CD47 in the myocardium after reperfusion may be a new strategy to enhance wound repair in the ischemic heart.

10.
Circ Res ; 121(8): 930-940, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851810

RESUMO

RATIONALE: Clinical benefits of reperfusion after myocardial infarction are offset by maladaptive innate immune cell function, and therapeutic interventions are lacking. OBJECTIVE: We sought to test the significance of phagocytic clearance by resident and recruited phagocytes after myocardial ischemia reperfusion. METHODS AND RESULTS: In humans, we discovered that clinical reperfusion after myocardial infarction led to significant elevation of the soluble form of MerTK (myeloid-epithelial-reproductive tyrosine kinase; ie, soluble MER), a critical biomarker of compromised phagocytosis by innate macrophages. In reperfused mice, macrophage Mertk deficiency led to decreased cardiac wound debridement, increased infarct size, and depressed cardiac function, newly implicating MerTK in cardiac repair after myocardial ischemia reperfusion. More notably, Mertk(CR) mice, which are resistant to cleavage, showed significantly reduced infarct sizes and improved systolic function. In contrast to other cardiac phagocyte subsets, resident cardiac MHCIILOCCR2- (major histocompatibility complex II/C-C motif chemokine receptor type 2) macrophages expressed higher levels of MerTK and, when exposed to apoptotic cells, secreted proreparative cytokines, including transforming growth factor-ß. Mertk deficiency compromised the accumulation of MHCIILO phagocytes, and this was rescued in Mertk(CR) mice. Interestingly, blockade of CCR2-dependent monocyte infiltration into the heart reduced soluble MER levels post-ischemia reperfusion. CONCLUSIONS: Our data implicate monocyte-induced MerTK cleavage on proreparative MHCIILO cardiac macrophages as a novel contributor and therapeutic target of reperfusion injury.


Assuntos
Macrófagos/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/enzimologia , Animais , Apoptose , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Monócitos/enzimologia , Monócitos/imunologia , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/imunologia , Miocárdio/patologia , Fagocitose , Fenótipo , Proteólise , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/imunologia , Receptores CCR2/genética , Receptores CCR2/imunologia , Receptores CCR2/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/imunologia , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Transdução de Sinais , Fatores de Tempo , c-Mer Tirosina Quinase
11.
J Immunol ; 197(9): 3639-3649, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27671111

RESUMO

Hypoxia-inducible factor (HIF)-α isoforms regulate key macrophage (MΦ) functions during ischemic inflammation. HIF-2α drives proinflammatory cytokine production; however, the requirements for HIF-2α during other key MΦ functions, including phagocytosis, are unknown. In contrast to HIF-1α, HIF-2α was not required for hypoxic phagocytic uptake. Surprisingly, basal HIF-2α levels under nonhypoxic conditions were necessary and sufficient to suppress phagocytosis. Screening approaches revealed selective induction of the scavenger receptor MARCO, which was required for enhanced engulfment. Chromatin immunoprecipitation identified the antioxidant NRF2 as being directly responsible for inducing Marco Concordantly, Hif-2α-/- MΦs exhibited reduced antioxidant gene expression, and inhibition of mitochondrial reactive oxygen species suppressed Marco expression and phagocytic uptake. Ex vivo findings were recapitulated in vivo; the enhanced engulfment phenotype resulted in increased bacterial clearance and cytokine suppression. Importantly, natural induction of Hif-2α by IL-4 also suppressed MARCO-dependent phagocytosis. Thus, unlike most characterized prophagocytic regulators, HIF-2α can act as a phagocytic repressor. Interestingly, this occurs in resting MΦs through tempering of steady-state mitochondrial reactive oxygen species. In turn, HIF-2α promotes MΦ quiescence by blocking a MARCO bacterial-response pathway. IL-4 also drives HIF-2α suppression of MARCO, leading to compromised bacterial immunosurveillance in vivo.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Macrófagos/fisiologia , Mitocôndrias/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular , Células Cultivadas , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunidade Inata , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/metabolismo
12.
J Mol Cell Cardiol ; 87: 171-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26316303

RESUMO

BACKGROUND: Mobilization of the innate immune response to clear and metabolize necrotic and apoptotic cardiomyocytes is a prerequisite to heart repair after cardiac injury. Suboptimal kinetics of dying myocyte clearance leads to secondary necrosis, and in the case of the heart, increased potential for collateral loss of neighboring non-regenerative myocytes. Despite the importance of myocyte phagocytic clearance during heart repair, surprisingly little is known about its underlying cell and molecular biology. OBJECTIVE: To determine if phagocytic receptor MERTK is expressed in human hearts and to elucidate key sequential steps and phagocytosis efficiency of dying adult cardiomyocytes, by macrophages. RESULTS: In infarcted human hearts, expression profiles of the phagocytic receptor MER-tyrosine kinase (MERTK) mimicked that found in experimental ischemic mouse hearts. Electron micrographs of myocardium identified MERTK signal along macrophage phagocytic cups and Mertk-/- macrophages contained reduced digested myocyte debris after myocardial infarction. Ex vivo co-culture of primary macrophages and adult cardiomyocyte apoptotic bodies revealed reduced engulfment relative to resident cardiac fibroblasts. Inefficient clearance was not due to the larger size of myocyte apoptotic bodies, nor were other key steps preceding the formation of phagocytic synapses significantly affected; this included macrophage chemotaxis and direct binding of phagocytes to myocytes. Instead, suppressed phagocytosis was directly associated with myocyte-induced inactivation of MERTK, which was partially rescued by genetic deletion of a MERTK proteolytic susceptibility site. CONCLUSION: Utilizing an ex vivo co-cultivation approach to model key cellular and molecular events found in vivo during infarction, cardiomyocyte phagocytosis was found to be inefficient, in part due to myocyte-induced shedding of macrophage MERTK. These findings warrant future studies to identify other cofactors of macrophage-cardiomyocyte cross-talk that contribute to cardiac pathophysiology.


Assuntos
Imunidade Inata/genética , Infarto do Miocárdio/genética , Miócitos Cardíacos/metabolismo , Fagocitose/genética , Proteínas Proto-Oncogênicas/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Animais , Apoptose/genética , Apoptose/imunologia , Linhagem Celular , Técnicas de Cocultura , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Necrose/genética , Necrose/metabolismo , Fagocitose/imunologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , c-Mer Tirosina Quinase
13.
Circ Res ; 113(8): 1004-12, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23836795

RESUMO

RATIONALE: Efficient clearance of apoptotic cells (efferocytosis) is a prerequisite for inflammation resolution and tissue repair. After myocardial infarction, phagocytes are recruited to the heart and promote clearance of dying cardiomyocytes. The molecular mechanisms of efferocytosis of cardiomyocytes and in the myocardium are unknown. The injured heart provides a unique model to examine relationships between efferocytosis and subsequent inflammation resolution, tissue remodeling, and organ function. OBJECTIVE: We set out to identify mechanisms of dying cardiomyocyte engulfment by phagocytes and, for the first time, to assess the causal significance of disrupting efferocytosis during myocardial infarction. METHODS AND RESULTS: In contrast to other apoptotic cell receptors, macrophage myeloid-epithelial-reproductive tyrosine kinase was necessary and sufficient for efferocytosis of cardiomyocytes ex vivo. In mice, Mertk was specifically induced in Ly6c(LO) myocardial phagocytes after experimental coronary occlusion. Mertk deficiency led to an accumulation of apoptotic cardiomyocytes, independently of changes in noncardiomyocytes, and a reduced index of in vivo efferocytosis. Importantly, suppressed efferocytosis preceded increases in myocardial infarct size and led to delayed inflammation resolution and reduced systolic performance. Reduced cardiac function was reproduced in chimeric mice deficient in bone marrow Mertk; reciprocal transplantation of Mertk(+/+) marrow into Mertk(-/-) mice corrected systolic dysfunction. Interestingly, an inactivated form of myeloid-epithelial-reproductive tyrosine kinase, known as solMER, was identified in infarcted myocardium, implicating a natural mechanism of myeloid-epithelial-reproductive tyrosine kinase inactivation after myocardial infarction. CONCLUSIONS: These data collectively and directly link efferocytosis to wound healing in the heart and identify Mertk as a significant link between acute inflammation resolution and organ function.


Assuntos
Apoptose , Inflamação/enzimologia , Macrófagos/enzimologia , Infarto do Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Fagocitose , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Cicatrização , Animais , Antígenos Ly/metabolismo , Transplante de Medula Óssea , Antígenos CD36/deficiência , Antígenos CD36/genética , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Recuperação de Função Fisiológica , Transdução de Sinais , Fatores de Tempo , Quimeras de Transplante , Função Ventricular Esquerda , Remodelação Ventricular , c-Mer Tirosina Quinase
14.
Methods Mol Biol ; 1004: 115-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23733573

RESUMO

Myocardial infarction (MI) is death and necrosis of myocardial tissue secondary to ischemia. MI is associated with adverse cardiac remodeling, progressive heart chamber dilation, ventricular wall thinning, and loss of cardiac function. Myocardial necrosis can be experimentally induced in rodents to simulate human MI by surgical occlusion of coronary arteries. When induced in knockout or transgenic mice, this model is useful for the identification of molecular modulators of cell death, cardiac remodeling, and preclinical therapeutic potential. Herein we outline in tandem, methods for microsurgical ligation of the left anterior descending artery followed by quantitation of myocardial necrosis. Necrosis is quantified after staining the heart with triphenyltetrazolium chloride.


Assuntos
Técnicas Citológicas/métodos , Infarto do Miocárdio/patologia , Animais , Oclusão Coronária/patologia , Vasos Coronários/patologia , Humanos , Camundongos , Infarto do Miocárdio/cirurgia , Necrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...