Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicon X ; 19: 100166, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37448555

RESUMO

Oysters (Crassostrea virginica) were screened for 12 phycotoxins over two years in nearshore waters to collect baseline phycotoxin data and to determine prevalence of phycotoxin co-occurrence in the commercially and ecologically-relevant species. Trace to low concentrations of azaspiracid-1 and -2 (AZA1, AZA2), domoic acid (DA), okadaic acid (OA), and dinophysistoxin-1 (DTX1) were detected, orders of magnitude below seafood safety action levels. Microcystins (MCs), MC-RR and MC-YR, were also found in oysters (maximum: 7.12 µg MC-RR/kg shellfish meat wet weight), warranting consideration of developing action levels for freshwater phycotoxins in marine shellfish. Oysters contained phycotoxins that impair shellfish health: karlotoxin1-1 and 1-3 (KmTx1-1, KmTx1-3), goniodomin A (GDA), and pectenotoxin-2 (PTX2). Co-occurrence of phycotoxins in oysters was common (54%, n = 81). AZAs and DA co-occurred most frequently of the phycotoxins investigated that are a concern for human health (n = 13) and PTX2 and KmTxs co-occurred most frequently amongst the phycotoxins of concern for shellfish health (n = 9). Various harmful algal bloom (HAB) monitoring methods and tools were assessed for their effectiveness at indicating levels of phycotoxins in oysters. These included co-deployed solid phase adsorption toxin tracking (SPATT) devices, toxin levels in particulate organic matter (POM, >1.5 µm) and whole water samples and cell concentrations from water samples as determined by microscopy and quantitative real-time PCR (qPCR). The dominant phycotoxin varied between SPATTs and all other phycotoxin sample types, and out of the 11 phycotoxins detected in oysters, only four and seven were detected in POM and whole water respectively, indicating phycotoxin profile mismatch between ecosystem compartments. Nevertheless, there were correlations between DA in oysters and whole water (simple linear regression [LR]: R2 = 0.6, p < 0.0001, n = 40), and PTX2 in oysters and SPATTs (LR: R2 = 0.3, p = 0.001, n = 36), providing additional monitoring tools for these phycotoxins, but oyster samples remain the best overall indicators of seafood safety.

2.
Harmful Algae ; 103: 101993, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33980433

RESUMO

Harmful algal blooms (HABs), varying in intensity and causative species, have historically occurred throughout the Chesapeake Bay, U.S.; however, phycotoxin data are sparse. The spatiotemporal distribution of phycotoxins was investigated using solid-phase adsorption toxin tracking (SPATT) across 12 shallow, nearshore sites within the lower Chesapeake Bay and Virginia's coastal bays over one year (2017-2018). Eight toxins, azaspiracid-1 (AZA1), azaspiracid-2 (AZA2), microcystin-LR (MC-LR), domoic acid (DA), okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2), and goniodomin A (GDA) were detected in SPATT extracts. Temporally, phycotoxins were always present in the region, with at least one phycotoxin group (i.e., consisting of OA and DTX1) detected at every time point. Co-occurrence of phycotoxins was also common; two or more toxin groups were observed in 76% of the samples analyzed. Toxin maximums: 0.03 ng AZA2/g resin/day, 0.25 ng DA/g resin/day, 15 ng DTX1/g resin/day, 61 ng OA/g resin/day, 72 ng PTX2/g resin/day, and 102,050 ng GDA/g resin/day were seasonal, with peaks occurring in summer and fall. Spatially, the southern tributary and coastal bay regions harbored the highest amount of total phycotoxins on SPATT over the year, and the former contained the greatest diversity of phycotoxins. The novel detection of AZAs in the region, before a causative species has been identified, supports the use of SPATT as an explorative tool in respect to emerging threats. The lack of karlotoxin in SPATT extracts, but detection of Karlodinium veneficum by microscopy, however, emphasizes that this tool should be considered complementary to, but not a replacement for, more traditional HAB management and monitoring methods.


Assuntos
Dinoflagellida , Monitoramento Ambiental , Baías , Proliferação Nociva de Algas
3.
J Microbiol Methods ; 178: 106068, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32980335

RESUMO

Collection System Investigation Microbial Source Tracking (CSI-MST) is a novel, sensitive approach for identifying sewer infrastructure deficiencies using molecular markers. This method requires both a detailed understanding of collection and conveyance system infrastructure and quickly turned around molecular data to advise an adaptive, targeted in-pipe approach to detect deficiencies. Here we explain the CSI-MST approach and provide several case study examples of how this approach can be adapted to different scale watersheds to identify potential sewer infrastructure issues. This approach has been used to locate and confirm the remediation of numerous needed infrastructure repairs in the southeastern Virginia region. The selected case studies presented here serve as a proof of concept-this methodology can be adopted by other utilities and municipalities to address necessary wastewater infrastructure repairs in different regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...