Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 21(9): 1227-1239, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686295

RESUMO

While numerous effectors that suppress plant immunity have been identified from bacteria, fungi, and oomycete pathogens, relatively little is known for nematode effectors. Several dozen effectors have been reported from the soybean cyst nematode (SCN). Previous studies suggest that a hypersensitive response-like programmed cell death is triggered at nematode feeding sites in soybean during an incompatible interaction. However, virulent SCN populations overcome this incompatibility using unknown mechanisms. A soybean BAG6 (Bcl-2 associated anthanogene 6) gene previously reported by us to be highly up-regulated in degenerating feeding sites induced by SCN in a resistant soybean line was attenuated in response to a virulent SCN population. We show that GmBAG6-1 induces cell death in yeast like its Arabidopsis homolog AtBAG6 and also in soybean. This led us to hypothesize that virulent SCN may target GmBAG6-1 as part of their strategy to overcome soybean defence responses during infection. Thus, we used a yeast viability assay to screen SCN effector candidates for their ability to specifically suppress GmBAG6-1-induced cell death. We identified several effectors that strongly suppressed cell death mediated by GmBAG6-1. Two effectors identified as suppressors showed direct interaction with GmBAG6-1 in yeast, suggesting that one mechanism of cell death suppression may occur through an interaction with this host protein.


Assuntos
Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Tylenchoidea/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Glycine max/parasitologia
2.
Nat Commun ; 8: 14822, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345654

RESUMO

Two types of resistant soybean (Glycine max (L.) Merr.) sources are widely used against soybean cyst nematode (SCN, Heterodera glycines Ichinohe). These include Peking-type soybean, whose resistance requires both the rhg1-a and Rhg4 alleles, and PI 88788-type soybean, whose resistance requires only the rhg1-b allele. Multiple copy number of PI 88788-type GmSNAP18, GmAAT, and GmWI12 in one genomic segment simultaneously contribute to rhg1-b resistance. Using an integrated set of genetic and genomic approaches, we demonstrate that the rhg1-a Peking-type GmSNAP18 is sufficient for resistance to SCN in combination with Rhg4. The two SNAPs (soluble NSF attachment proteins) differ by only five amino acids. Our findings suggest that Peking-type GmSNAP18 is performing a different role in SCN resistance than PI 88788-type GmSNAP18. As such, this is an example of a pathogen resistance gene that has evolved to underlie two types of resistance, yet ensure the same function within a single plant species.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Glycine max/genética , Glycine max/parasitologia , Nematoides/fisiologia , Proteínas de Soja/genética , Alelos , Animais , Clonagem Molecular , DNA de Plantas/genética , Teste de Complementação Genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita , Mutação INDEL , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
3.
BMC Res Notes ; 6: 255, 2013 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23830484

RESUMO

BACKGROUND: Bean pod mottle virus (BPMV) based virus-induced gene silencing (VIGS) vectors have been developed and used in soybean for the functional analysis of genes involved in disease resistance to foliar pathogens. However, BPMV-VIGS protocols for studying genes involved in disease resistance or symbiotic associations with root microbes have not been developed. FINDINGS: Here we describe a BPMV-VIGS protocol suitable for reverse genetic studies in soybean roots. We use this method for analyzing soybean genes involved in resistance to soybean cyst nematode (SCN). A detailed SCN screening pipeline is described. CONCLUSIONS: The VIGS method described here provides a new tool to identify genes involved in soybean-nematode interactions. This method could be adapted to study genes associated with any root pathogenic or symbiotic associations.


Assuntos
Comovirus/metabolismo , Inativação Gênica , Vetores Genéticos , Glycine max/genética , Glycine max/parasitologia , Nematoides/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Interferência de RNA , Animais , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita/genética , Raízes de Plantas
4.
Nature ; 492(7428): 256-60, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23235880

RESUMO

Soybean (Glycine max (L.) Merr.) is an important crop that provides a sustainable source of protein and oil worldwide. Soybean cyst nematode (Heterodera glycines Ichinohe) is a microscopic roundworm that feeds on the roots of soybean and is a major constraint to soybean production. This nematode causes more than US$1 billion in yield losses annually in the United States alone, making it the most economically important pathogen on soybean. Although planting of resistant cultivars forms the core management strategy for this pathogen, nothing is known about the nature of resistance. Moreover, the increase in virulent populations of this parasite on most known resistance sources necessitates the development of novel approaches for control. Here we report the map-based cloning of a gene at the Rhg4 (for resistance to Heterodera glycines 4) locus, a major quantitative trait locus contributing to resistance to this pathogen. Mutation analysis, gene silencing and transgenic complementation confirm that the gene confers resistance. The gene encodes a serine hydroxymethyltransferase, an enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Alleles of Rhg4 conferring resistance or susceptibility differ by two genetic polymorphisms that alter a key regulatory property of the enzyme. Our discovery reveals an unprecedented plant resistance mechanism against a pathogen. The mechanistic knowledge of the resistance gene can be readily exploited to improve nematode resistance of soybean, an increasingly important global crop.


Assuntos
Glycine max/genética , Glycine max/parasitologia , Interações Hospedeiro-Parasita , Nematoides/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA , Ordem dos Genes , Inativação Gênica , Teste de Complementação Genética , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Haplótipos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/química , Polimorfismo Genético/genética , Estrutura Terciária de Proteína , Locos de Características Quantitativas/genética , Glycine max/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA