Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 234, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168540

RESUMO

Optical motion capture (OMC) is considered the best available method for measuring spine kinematics, yet inertial measurement units (IMU) have the potential to collect data outside the laboratory. When combined with musculoskeletal modeling, IMU technology may be used to estimate spinal loads in real-world settings. To date, IMUs have not been validated for estimates of spinal movement and loading during both walking and running. Using OpenSim Thoracolumbar Spine and Ribcage models, we compare IMU and OMC estimates of lumbosacral (L5/S1) and thoracolumbar (T12/L1) joint angles, moments, and reaction forces during gait across six speeds for five participants. For comparisons, time series are ensemble averaged over strides. Comparisons between IMU and OMC ensemble averages have low normalized root mean squared errors (< 0.3 for 81% of comparisons) and high, positive cross-correlations (> 0.5 for 91% of comparisons), suggesting signals are similar in magnitude and trend. As expected, joint moments and reaction forces are higher during running than walking for IMU and OMC. Relative to OMC, IMU overestimates joint moments and underestimates joint reaction forces by 20.9% and 15.7%, respectively. The results suggest using a combination of IMU technology and musculoskeletal modeling is a valid means for estimating spinal movement and loading.


Assuntos
Corrida , Caminhada , Humanos , Fenômenos Biomecânicos , Marcha , Fenômenos Mecânicos
2.
Ergonomics ; 66(6): 849-858, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36193633

RESUMO

We examined the effects of vertical load placement on the metabolic cost of walking. Twelve healthy participants walked on a treadmill with 13.8 and 23.4 kg loads in both high and low vertical positions. Metabolic rate was measured using respirometry. While load position had no effect on the net metabolic rate for the 13.8 kg load, the net metabolic rate with the 23.4 kg load was significantly reduced by 4.3% in the high vertical load position compared to the low vertical load position. Loads carried higher on the trunk were also associated with increased forward trunk lean that reduced the load gravitational moment arm in the sagittal plane suggesting that reduction of fore-aft upper body torques is an energy-saving mechanism during loaded walking. Practitioner Summary: Load placement within a backpack affects the biomechanics of load carriage. We experimentally tested the metabolic cost of high and low load placement during walking and found the high position to be less costly with large loads. Loading high may be the optimal technique for carrying heavy backpacks.


Assuntos
Teste de Esforço , Caminhada , Humanos , Suporte de Carga , Fenômenos Biomecânicos , Torque
3.
Curr Biol ; 31(20): R1375-R1376, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699797

RESUMO

Over the past two centuries profound technological and social changes have reduced overall levels of physical activity (PA). However, just how much population-level PA levels have declined since the Industrial Revolution is unknown because methods for measuring PA, such as accelerometry and the doubly labeled water technique, were developed only within the last few decades. Here, we show that historical records of resting body temperature (TB) can serve as a 'thermometer' of population-level PA, enabling us to use the well-documented secular decline in TB in the US1 to approximate PA decline in the US since 1820. Using cross-sectional data relating TB to resting metabolic rate (RMR) and RMR to PA, we estimate that RMR has declined by ∼6% and moderate to vigorous PA by ∼27 minutes per day since 1820 in the US.


Assuntos
Temperatura Corporal , Termômetros , Acelerometria , Estudos Transversais , Exercício Físico , Estados Unidos
4.
Am J Phys Anthropol ; 175(3): 589-598, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33818760

RESUMO

OBJECTIVES: Brachial index is a skeletal ratio that describes the relative length of the distal forelimb. Over the course of hominin evolution, a shift toward smaller brachial indices occurred. First, Pleistocene australopiths yield values between extant chimpanzees and humans, with further evolution in Pliocene Homo to the modern human range. We hypothesized that shorter distal forelimbs benefit walking and running performance, notably elbow and shoulder joint torques, and predicted that the benefit would be greater in running compared to walking. MATERIALS AND METHODS: We tested our hypothesis in a modern human sample walking and running while carrying hand weights, which increase the inertia (mass and effective length) of the distal forelimb, simulating a larger brachial index. RESULTS: We found longer distal forelimbs and the added mass increased elbow muscle torque by 98% while walking and 70% in running, confirming our hypothesis that shorter distal forelimbs benefit walking and running performance. Shoulder muscle torque similarly increased in both gaits with the addition of hand weights due to elongation of the effective forelimb length. Normalized elbow torque, which accounted for the effect on shoulder torque caused by the experimental manipulation, increased by 16% while walking but 52% while running, indicating that shorter distal forelimbs provide a greater benefit for running by approximately three-fold. DISCUSSION: Selection for economical bipedal walking in Australopithecus and endurance running in Homo likely contributed to the shift toward relatively smaller distal forelimbs across hominin evolution, with modern human proportions attained in Pleistocene Homo erectus and retained in later species.


Assuntos
Hominidae , Animais , Evolução Biológica , Fenômenos Biomecânicos , Membro Anterior , Humanos , Músculo Esquelético , Caminhada
5.
Am J Phys Anthropol ; 174(4): 752-762, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33491216

RESUMO

OBJECTIVES: The main objective was to test the hypothesis of a neuromechanical link in humans between the head and forearm during running mediated by the biceps brachii and superior trapezius muscles. We hypothesized that this linkage helps stabilize the head and combats rapid forward pitching during running which may interfere with gaze stability. MATERIALS AND METHODS: Thirteen human participants walked and ran on a treadmill while motion capture recorded body segment kinematics and electromyographic sensors recorded muscle activation. To test perturbations to the linkage system we compared participants running normally as well as with added mass to the face and the hand. RESULTS: The results confirm the presence of a neuromechanical linkage between the head and forearm mediated by the biceps and superior trapezius during running but not during walking. In running, the biceps and superior trapezius activations were temporally linked during the stride cycle, and adding mass to either the head or hand increased activation in both muscles, consistent with our hypothesis. During walking the forces acting on the body segments and muscle activation levels were much smaller than during running, indicating no need for a linkage to keep the head and gaze stable. DISCUSSION: The results suggest that the evolution of long distance running in early Homo may have favored selection for reduced rotational inertia of both the head and forearm through synergistic muscle activation, contributing to the transition from australopith head and forelimb morphology to the more human-like form of Homo erectus. Selective pressures from the evolution of bipedal walking were likely much smaller, but may explain in part the intermediate form of the australopith scapula between that of extant apes and humans.


Assuntos
Fenômenos Biomecânicos/fisiologia , Antebraço/fisiologia , Cabeça/fisiologia , Corrida/fisiologia , Adulto , Animais , Antropologia Física , Eletromiografia , Feminino , Hominidae/fisiologia , Humanos , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Adulto Jovem
6.
J Exp Biol ; 222(Pt 13)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289110

RESUMO

Stereotypically, walking and running gaits in humans exhibit different arm swing behavior: during walking, the arm is kept mostly straight, while during running, the arm is bent at the elbow. The mechanism for this behavioral difference has not been explored before. We hypothesized that a mechanical tradeoff exists between the shoulder joint and the elbow joint. Bending the elbow reduces the radius of gyration of the arm and reduces shoulder muscle torque, but at the price of increasing elbow torque. We predicted that the mechanical tradeoff would result in energetics that favored straight arms during walking and bent arms during running. The hypothesis was tested experimentally by having eight subjects walk and run with both straight arms and bent arms while recording arm swing mechanics, and oxygen consumption in a subset of six subjects. The mechanical tradeoff hypothesis was confirmed, with bent arms reducing normalized shoulder muscle torque in both gaits (walking: -33%, running: -32%) and increasing normalized elbow muscle torque in both gaits (walking: +110%, running: +30%). Bent arms increased oxygen consumption by 11% when walking, supporting our prediction that energetics favor straight arms during walking. However, oxygen consumption was equivalent for the straight and bent arm running conditions, and did not support our running prediction. We conclude that straight arms are stereotyped in walking as a result of optimal energetics, while the mechanism leading to bent arms during running remains unknown.


Assuntos
Articulação do Cotovelo/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Articulação do Ombro/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Torque , Adulto Jovem
7.
Nature ; 571(7764): 261-264, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31243365

RESUMO

Until relatively recently, humans, similar to other animals, were habitually barefoot. Therefore, the soles of our feet were the only direct contact between the body and the ground when walking. There is indirect evidence that footwear such as sandals and moccasins were first invented within the past 40 thousand years1, the oldest recovered footwear dates to eight thousand years ago2 and inexpensive shoes with cushioned heels were not developed until the Industrial Revolution3. Because calluses-thickened and hardened areas of the epidermal layer of the skin-are the evolutionary solution to protecting the foot, we wondered whether they differ from shoes in maintaining tactile sensitivity during walking, especially at initial foot contact, to improve safety on surfaces that can be slippery, abrasive or otherwise injurious or uncomfortable. Here we show that, as expected, people from Kenya and the United States who frequently walk barefoot have thicker and harder calluses than those who typically use footwear. However, in contrast to shoes, callus thickness does not trade-off protection, measured as hardness and stiffness, for the ability to perceive tactile stimuli at frequencies experienced during walking. Additionally, unlike cushioned footwear, callus thickness does not affect how hard the feet strike the ground during walking, as indicated by impact forces. Along with providing protection and comfort at the cost of tactile sensitivity, cushioned footwear also lowers rates of loading at impact but increases force impulses, with unknown effects on the skeleton that merit future study.


Assuntos
Calosidades/fisiopatologia , Pé/patologia , Pé/fisiologia , Dor/fisiopatologia , Tato/fisiologia , Caminhada/fisiologia , Adulto , Boston , Calosidades/patologia , Feminino , Fricção/fisiologia , Dureza/fisiologia , Humanos , Quênia , Masculino , Pessoa de Meia-Idade , Estimulação Física , Pressão , Sapatos , Fenômenos Fisiológicos da Pele , Suporte de Carga/fisiologia , Adulto Jovem
8.
Proc Biol Sci ; 285(1890)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404871

RESUMO

The convergent evolution of the human pygmy phenotype in tropical rainforests is widely assumed to reflect adaptation in response to the distinct ecological challenges of this habitat (e.g. high levels of heat and humidity, high pathogen load, low food availability, and dense forest structure), yet few precise adaptive benefits of this phenotype have been proposed. Here, we describe and test a biomechanical model of how the rainforest environment can alter gait kinematics such that short stature is advantageous in dense habitats. We hypothesized that environmental constraints on step length in rainforests alter walking mechanics such that taller individuals are expected to walk more slowly due to their inability to achieve preferred step lengths in the rainforest. We tested predictions from this model with experimental field data from two short-statured populations that regularly forage in the rainforest: the Batek of Peninsular Malaysia and the Tsimane of the Bolivian Amazon. In accordance with model expectations, we found stature-dependent constraints on step length in the rainforest and concomitant reductions in walking speed that are expected to compromise foraging efficiency. These results provide the first evidence that the human pygmy phenotype is beneficial in terms of locomotor performance and highlight the value of applying laboratory-derived biomechanical models to field settings for testing evolutionary hypotheses.


Assuntos
Adaptação Biológica , Estatura , Locomoção , Fenótipo , Floresta Úmida , Fenômenos Biomecânicos , Bolívia , Humanos , Malásia , Masculino , Modelos Biológicos , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...