Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364138

RESUMO

Meloxicam (MLX) is currently used in the therapeutic management of both acute and chronic inflammatory disorders such as pain, injuries, osteoarthritis, and rheumatoid arthritis in both humans and animals. Gastrointestinal toxicity and occasional renal toxicity were observed in patients taking it for a long-term period. Meloxicam's late attainment of peak plasma concentration results in a slow onset of action. The goal of the current study was to prepare and characterize chitosan encapsulated meloxicam nanoparticles (CEMNPs) with high bioavailability and less gastro intestinal toxicity in order to prevent such issues. The size of the prepared CEMNPs was approximately 110-220 nm with a zetapotential of +39.9 mV and polydispersity index of 0.268, suggesting that they were uniformly dispersed nanoparticles. The FTIR and UV-Vis spectroscopy have confirmed the presence of MLX in the prepared CEMNPs. The pharmacokinetics have been studied with three groups of male Wistar rats receiving either of the treatments, viz., 4 mg·kg-1 of MLX and 1 or 4 mg·kg-1 of CEMNPs. Plasma samples were collected until 48 h post administration, and concentrations of MLX were quantified by using reverse (C18) phase HPLC. Non-compartmental analysis was applied to determine pharmacokinetic variables. Upon oral administration, the maximum concentration (Cmax) was reached in 4 h for CEMNPs and 6 h for MLX. The mean area under the plasma MLX concentration-time curve from 'zero' to infinity (AUC0-∞), half-life (t1/2ß), and mean resident time (MRT) of 1 mg·kg-1 of CEMNPs was 1.4-, 2-, and 1.8-fold greater than 4 mg·kg-1 of MLX. The prepared CEMNPs demonstrated quicker absorption and prolonged release along with a significant improvement in the bioavailability of MLX, paving a prospective path for the development of drugs with enhanced bioavailability with less side effects.


Assuntos
Quitosana , Nanopartículas , Tiazinas , Humanos , Ratos , Animais , Masculino , Meloxicam , Tiazinas/química , Ratos Wistar , Estudos Prospectivos , Anti-Inflamatórios não Esteroides/química , Tiazóis/química
2.
IET Nanobiotechnol ; 14(8): 722-731, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33108330

RESUMO

This study aims to synthesise and evaluate the acaricidal activity of nanoscale zinc oxide piperine formulation (NZPF) against Rhipicephalus microplus ticks. NZPF was prepared by using zinc oxide nanoparticles (ZnONPs) and piperine by employing encapsulation technique; characterised by UV spectroscopy, Fourier transformed infrared analysis, X-ray diffraction, dynamic light scattering, zetapotential and scanning electron microscopy. Acaricidal activity of the NZPF on R. microplus was evaluated using larval packet test (LPT) and adult immersion test (AIT). LPT against R. microplus larvae showed an LC50 at 1 mg/l for NZPF followed by 2 and 3 mg/l for ZnONPs and piperine, respectively. AIT against R. microplus showed an LC50 at concentration of 3 mg/l for NZPF followed by 6 mg/l for ZnONPs and 7 mg/l for piperine. In both LPT and AIT, LC50 values of ZnONPs and NZPF were significantly lower compared to deltamethrin. NZPF showed significant ovulation inhibitory activity with lower IC50 and IC99 values compared to ZnONPs and piperine. NZPF has been proved to be the better alternative to routine chemical acaricides for control of tick infestation of cattle in the wake of acaricidal resistance, but safety issues need to be addressed before clinical application.


Assuntos
Acaricidas/farmacologia , Alcaloides/química , Benzodioxóis/química , Nanopartículas Metálicas/administração & dosagem , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Rhipicephalus/efeitos dos fármacos , Infestações por Carrapato/veterinária , Óxido de Zinco/química , Acaricidas/química , Alcaloides/farmacologia , Animais , Benzodioxóis/farmacologia , Bovinos , Feminino , Nanopartículas Metálicas/química , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Infestações por Carrapato/tratamento farmacológico , Infestações por Carrapato/parasitologia , Óxido de Zinco/farmacologia
3.
IET Nanobiotechnol ; 10(5): 340-348, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27676384

RESUMO

Wound healing requires a series of cellular events and a cascade of co-ordinated and systemic biochemical events. Silver nanoparticles possess many beneficial properties for wound management including antibacterial, anti-inflammatory and pro-healing properties. In this study, the authors investigated the wound healing properties of Cinnamomum verum extract mediated nanosilver (CENS) particles in comparison with 1% povidone iodine, citrate mediate NS and CE treatments. The topical application of CENS showed good antibacterial activity and accelerated wound healing with complete epithelialisation and normal re-growth of hair in all three models of study: namely, excision, incision and dead space models in rats compared with all other treatments. CENS was also found to promote collagen synthesis, stabilise wound besides countering oxidative stress and stimulating cellular proliferation CENS could be a novel therapeutic agent for wound management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...