Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36359294

RESUMO

(Background) The coronavirus disease 2019 (COVID-19) that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries high infectivity and mortality. Efficient intervention strategies are urgently needed. Avian immunoglobulin Y (IgY) showed efficacy against viral infection whereas the in vivo efficacy remains unclear. (Methods) We immunized laying hens with S1, S1 receptor-binding domain (S1-RBD), or S2 subunits of the SARS-CoV-2 spike (S) protein. After immunization, IgYs were collected and extracted from the egg yolks. The neutralization potential of IgYs was examined by the plaque reduction neutralization test (PRNT). The bioutility of IgYs was examined in Syrian hamsters in vivo. (Results) IgYs exhibited typical banding patterns in SDS-PAGE and Western blot and were immunoreactive against S1, S1-RBD, and S2 subunits. The plaque reduction neutralization test (PRNT) showed that all purified IgYs potently neutralized different SARS-CoV-2 strains in vitro. In Syrian hamsters, the combination of IgYs for S1-RBD and S2 subunits administered before or after SARS-CoV-2 infection effectively restored body weight loss and reduced intrapulmonary lesions and the amount of immunoreactive N protein-positive cells, which were caused by SARS-CoV-2 infection. (Conclusions) Collectively, IgYs specific for S protein subunits effectively neutralized SARS-CoV-2 in vitro and in vivo and may serve as prophylactic or therapeutic antibodies in the prevention or treatment of COVID-19.

2.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917182

RESUMO

Dengue fever is an arbovirus disease caused by infection with the dengue virus (DENV). Half of the world's population lives under the threat of dengue fever, however, researchers have yet to develop any drugs that are clinically applicable to this infection. Micafungin is a member of the echinocandins family of anti-fungal drugs, capable of blocking the synthesis of ß-1,3-D-glucan in the walls of fungal cells. Previous studies have demonstrated the effectiveness of Micafungin against infections of enterovirus 71 (EV71) and chikungunya virus (CHIKV). This is the first study demonstrating the effectiveness of micafungin in inhibiting the cytopathic effects of dengue virus serotype 2 (DENV-2) in a dose-dependent manner. Time-of-addition assays verified the inhibitory effects of micafungin in pre-treated, co-treated, and full-treatment groups. Binding and entry assays also demonstrated the effectiveness of micafungin in the early stage of DENV-2 infection. The virucidal efficacy of micafungin appears to lie in its ability to destroy the virion. Molecular docking assays revealed the binding of micafungin to the envelope protein of DENV-2, thereby revealing the mechanism by which micafungin affects the early stage of DENV infection and the stability of DENV. Two other micafungin analogs, caspofungin and anidulafungin, were also shown to have the antiviral effects on DENV-2. Finally, immunofluorescence assay (IFA) and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) confirmed the broad anti-DENV ability of micafungin against dengue virus serotypes 1, 3, and 4 (DENV-1, DENV-3, and DENV-4). Taken together, these results demonstrate the potential of micafungin and its analogs as candidates for the development of broad-spectrum treatments for DENV infection.

3.
Viruses ; 11(6)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212631

RESUMO

Novel low-pathogenic avian influenza (LPAI) H5N2 viruses hit poultry farms in Taiwan in 2003, and evolved into highly pathogenic avian influenza (HPAI) viruses in 2010. These viruses are reassortant viruses containing HA and NA genes from American-lineage H5N2 and six internal genes from local H6N1 viruses. According to a serological survey, the Taiwan H5N2 viruses can cause asymptomatic infections in poultry workers. Therefore, a development of influenza H5N2 vaccines is desirable for pandemic preparation. In this study, we employed reverse genetics to generate a vaccine virus having HA and NA genes from A/Chicken/CY/A2628/2012 (E7, LPAI) and six internal genes from a Vero cell-adapted high-growth H5N1 vaccine virus (Vero-15). The reassortant H5N2 vaccine virus, E7-V15, presented high-growth efficiency in Vero cells (512 HAU, 107.6 TCID50/mL), and passed all tests for qualification of candidate vaccine viruses. In ferret immunization, two doses of inactivated whole virus antigens (3 µg of HA protein) adjuvanted with alum could induce robust antibody response (HI titre 113.14). In conclusion, we have established reverse genetics to generate a qualified reassortant H5N2 vaccine virus for further development.


Assuntos
Vírus da Influenza A Subtipo H5N2/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/isolamento & purificação , Influenza Humana/prevenção & controle , Vírus Reordenados/imunologia , Animais , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Neuraminidase/genética , Neuraminidase/imunologia , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/isolamento & purificação , Genética Reversa , Taiwan , Resultado do Tratamento , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Células Vero , Proteínas Virais/genética , Proteínas Virais/imunologia
4.
Antiviral Res ; 159: 134-142, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30300716

RESUMO

The chikungunya virus (CHIKV) is a mosquito-borne virus that belongs to the genus Alphavirus, family Togaviridae. It is the cause of chikungunya fever in humans, which presents a serious global threat due to its high rate of contagion. The clinical symptoms of CHIKV include fever and persistent, severe arthritis. Micafungin has broad-spectrum fungicidal activity against Candida spp. is a promising echinocandin that was recently approved by the U.S. Food and Drug Administration (FDA) and has demonstrated activity against Candida and Aspergillus. Recent studies have demonstrated the antiviral activity of micafungin; however, the inhibitory effects against CHIKV have yet to be investigated. Our objectives in this study were to explore the antiviral effects of micafungin on CHIKV infection and to elucidate the potential molecular mechanisms of inhibition. We determined that micafungin has the ability to counter CHIKV-induced cytopathic effects. We further discovered that micafungin limits virus replication, release, cell-to-cell transmission, and also slightly affected virus stability during high doses treatment. The efficacy of micafungin was further confirmed against two clinical isolates of CHIKV and two alphaviruses: Sindbis virus (SINV) and Semliki Forest virus (SFV). Our findings suggest that micafungin has considerable potential as a novel inhibitor against the viral replication, and intracellular and extracellular transmission of CHIKV, and has a little effect on virus stability. Our findings also suggest that micafungin could have curative effects on other alphavirus infections.


Assuntos
Alphavirus/efeitos dos fármacos , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Micafungina/farmacologia , Infecções por Alphavirus/tratamento farmacológico , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Vírus da Floresta de Semliki/efeitos dos fármacos , Sindbis virus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
Virology ; 508: 159-163, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28549236

RESUMO

During December 2003 and March 2004, large scale epidemics of low-pathogenic avian influenza (LPAI) H5N2 occurred in poultry farms in central and southern Taiwan. Based on genomic analysis, these H5N2 viruses contain HA and NA genes of American-lineage H5N2 viruses and six internal genes from avian influenza A/H6N1 viruses endemic in poultry in Taiwan. After disappearing for several years, these novel influenza H5N2 viruses caused outbreaks in poultry farms again in 2008, 2010 and 2012, and have evolved into high pathogenic AI (HPAI) since 2010. Moreover, asymptomatic infections of influenza H5N2 were detected serologically in poultry workers in 2012. Therefore, we evaluated antigenicity and pathogenicity of the novel H5N2 viruses in ferrets. We found that no significant antigenic difference was detected among the novel H5N2 viruses isolated from 2003 to 2014 and the novel H5N2 viruses could cause mild infections in ferrets. Monitoring zoonotic transmission of the novel H5N2 viruses is necessary.


Assuntos
Vírus da Influenza A Subtipo H5N2/imunologia , Vírus da Influenza A Subtipo H5N2/patogenicidade , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Anticorpos Antivirais/sangue , Galinhas , Feminino , Furões , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Influenza Aviária/sangue , Influenza Aviária/epidemiologia , Influenza Aviária/patologia , Masculino , Filogenia , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologia , Taiwan/epidemiologia , Estados Unidos/epidemiologia , Virulência
6.
Biotechnol Bioeng ; 112(10): 2005-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25997678

RESUMO

Enterovirus 71 (EV71) is responsible for the outbreaks of hand-foot-and-mouth disease in the Asia-Pacific region. To produce the virus-like particle (VLP) vaccine, we previously constructed recombinant baculoviruses to co-express EV71 P1 polypeptide and 3CD protease using the Bac-to-Bac(®) vector system. The recombinant baculoviruses resulted in P1 cleavage by 3CD and subsequent VLP assembly in infected insect cells, but caused either low VLP yield or excessive VLP degradation. To tackle the problems, here we explored various expression cassette designs and flashBAC GOLD™ vector system which was deficient in v-cath and chiA genes. We found that the recombinant baculovirus constructed using the flashBAC GOLD™ system was insufficient to improve the EV71 VLP yield. Nonetheless, BacF-P1-C3CD, a recombinant baculovirus constructed using the flashBAC GOLD(TM) system to express P1 under the polh promoter and 3CD under the CMV promoter, dramatically improved the VLP yield while alleviating the VLP degradation. Infection of High Five(TM) cells with BacF-P1-C3CD enhanced the total and extracellular VLP yield to ≈268 and ≈171 mg/L, respectively, which enabled the release of abundant VLP into the supernatant and simplified the downstream purification. Intramuscular immunization of mice with 5 µg purified VLP induced cross-protective humoral responses and conferred protection against lethal virus challenge. Given the significantly improved extracellular VLP yield (≈171 mg/L) and the potent immunogenicity conferred by 5 µg VLP, one liter High Five(TM) culture produced ≈12,000 doses of purified vaccine, thus rendering the EV71 VLP vaccine economically viable and able to compete with inactivated virus vaccines.


Assuntos
Baculoviridae , Enterovirus Humano A/genética , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Proteínas Virais/metabolismo , Virossomos/metabolismo , Animais , Anticorpos Antivirais/sangue , Ásia , Modelos Animais de Doenças , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/prevenção & controle , Vetores Genéticos , Injeções Intramusculares , Insetos , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sobrevida , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas Virais/genética , Virossomos/administração & dosagem , Virossomos/genética , Virossomos/imunologia
7.
PLoS One ; 10(3): e0120793, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799397

RESUMO

Avian-origin influenza A (H7N9) viruses emerged as human pathogens in China in early 2013 and have killed >100 persons. Influenza vaccines are mainly manufactured using egg-based technology which could not meet the surging demand during influenza pandemics. In this study, we evaluated cell-based influenza H7N9 vaccines in ferrets. An egg-derived influenza H7N9 reassortant vaccine virus was adapted in MDCK cells. Influenza H7N9 whole virus vaccine antigen was manufactured using a microcarrier-based culture system. Immunogenicity and protection of the vaccine candidates with three different formulations (300 µg aluminum hydroxide, 1.5 µg HA, and 1.5 µg HA plus 300 µg aluminum hydroxide) were evaluated in ferrets. In ferrets receiving two doses of vaccination, geometric mean titers of hemagglutination (HA) inhibition and neutralizing antibodies were <10 and <40 for the control group (adjuvant only), 17 and 80 for the unadjuvanted (HA only) group, and 190 and 640 for the adjuvanted group (HA plus adjuvant), respectively. After challenge with wild-type influenza H7N9 viruses, virus titers in respiratory tracts of the adjuvanted group were significantly lower than that in the control, and unadjuvanted groups. MDCK cell-derived influenza H7N9 whole virus vaccine candidate is immunogenic and protective in ferrets and clinical development is highly warranted.


Assuntos
Furões , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Adaptação Biológica , Animais , Antígenos Virais/imunologia , Cães , Feminino , Imunização , Subtipo H7N9 do Vírus da Influenza A/ultraestrutura , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Vírus Reordenados
8.
J Biomed Sci ; 12(5): 711-27, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16132115

RESUMO

The spike (S) glycoprotein is thought to play a complex and central role in the biology and pathogenesis of SARS coronavirus infection. In this study, a recombinant protein (rS268, corresponding to residues 268-1255 of SARS-CoV S protein) was expressed in Escherichia coli and was purified to near homogeneity. After immunization with rS268, S protein-specific BALB/c antisera and mAbs were induced and confirmed using ELISA, Western blot and IFA. Several BALB/c mAbs were found to be effectively to neutralize the infection of Vero E6 cells by SARS-CoV in a dose-dependent manner. Systematic epitope mapping showed that all these neutralizing mAbs recognized a 15-residues peptide (CB-119) corresponding to residues 1143-1157 (SPDVDLGDISGINAS) that was located to the second heptad repeat (HR2) region of the SARS-CoV spike protein. The peptide CB-119 could specifically inhibit the interaction of neutralizing mAbs and spike protein in a dose-dependent manner. Further, neutralizing mAbs, but not control mAbs, could specifically interact with CB-119 in a dose-dependent manner. Results implicated that the second heptad repeat region of spike protein could be a good target for vaccine development against SARS-CoV.


Assuntos
Anticorpos Monoclonais/química , Epitopos/química , Glicoproteínas de Membrana/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Sequência de Bases , Western Blotting , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Técnica Indireta de Fluorescência para Anticorpo , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/imunologia
9.
Vaccine ; 21(25-26): 3919-29, 2003 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-12922127

RESUMO

To evaluate the potential of DNA vaccine against dengue (DEN) infection, we characterize the protective efficacy and immune responses of mice intramuscularly injected with plasmid encoding DEN-2 non-structural protein 1 (NS1). Intravenously challenged by lethal DEN-2, mice vaccinated with NS1-DNA exhibited a delay onset of paralysis, a marked decrease of morbidity, and a significant enhancement of survival. In addition to a moderate increase of NS1-specific antibody titer from immunized mice measured by ELISA, a strong priming effect on anti-NS1 response was also noticed in plasmid NS1-vaccinated mice by radioimmunoprecipitation (RIP) or immunoblot analysis. Interestingly, newborn mice from NS1-DNA-immunized dam showed stronger resistance to viral challenge, as compared to those from vector DNA or PBS-immunized dams, indicating the protective role of NS1-specific antibody. In contrast to humoral immune response, DNA immunization can elicit strong cellular immune responses, including NS1-specific T cell proliferation and cytolytic activity. The NS1-DNA-induced protection can be further augmented by co-injection of plasmid encoding interleukin 12 (IL-12), suggesting an effector role of Th1 immunity against DEN infection. In summary, our results suggest the potential of NS1-DNA vaccine against DEN infection, and indicate both NS1-specific humoral and cellular immune responses contribute to the protection.


Assuntos
Vírus da Dengue/imunologia , Dengue/prevenção & controle , Vacinas de DNA/imunologia , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Animais , Animais Recém-Nascidos , Formação de Anticorpos/imunologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/biossíntese , Citocinas/genética , DNA Bacteriano/genética , DNA Bacteriano/imunologia , Dengue/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Imunidade Celular/imunologia , Immunoblotting , Indicadores e Reagentes , Interleucina-12/fisiologia , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Plasmídeos/genética , Plasmídeos/imunologia , Testes de Precipitina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida , Linfócitos T/imunologia , Células Th1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...