Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38790643

RESUMO

Previous studies showed that NaIO3 can induce oxidative stress-mediated retinal pigment epithelium (RPE) damage to simulate age-related macular degeneration (AMD). Lemon peel is rich in antioxidants and components that can penetrate the blood-retinal barrier, but their role in retinal oxidative damage remains unexplored. Here, we explore the protection of lemon peel ultrasonic-assisted water extract (LUWE), containing large amounts of flavonoids and polyphenols, against NaIO3-induced retinal degeneration. We initially demonstrated that LUWE, orally administered, prevented retinal distortion and thinning on the inner and outer nuclei layers, downregulating cleaved caspase-3 protein expression in RPE cells in NaIO3-induced mice. The effect of LUWE was achieved through the suppression of apoptosis and the associated proteins, such as cleaved PARP and cleaved caspase-3, as suggested by NaIO3-induced ARPE-19 cell models. This is because LUWE reduced reactive oxygen species-mediated mitochondrial fission via regulating p-Drp-1 and Fis1 expression. We further confirmed that LUWE suppresses the expression of p-MEK-1/2 and p-ERK-1/2 in NaIO3-induced ARPE-19 cells, thereby providing the protection described above, which was confirmed using PD98059 and U0126. These results indicated that LUWE prevents mitochondrial oxidative stress-mediated RPE damage via the MEK/ERK pathway. Elucidation of the molecular mechanism may provide a new protective strategy against retinal degeneration.

2.
Food Funct ; 14(24): 10896-10909, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37990840

RESUMO

Previous studies have indicated that NaIO3 induces intracellular reactive oxygen species (ROS) production and has been used as a model for age-related macular degeneration (AMD) due to the selective retinal pigment epithelium (RPE) cell damage it induces. Beta-mangostin (BM) is a xanthone-type natural compound isolated from Cratoxylum arborescens. The influence of BM on NaIO3-induced oxidative stress damage in ARPE-19 cells has not yet been elucidated. In this study, we investigated how BM protects ARPE-19 cells from NaIO3-induced ROS-mediated apoptosis. Our results revealed that BM notably improved cell viability and prevented ARPE-19 cell mitochondrial dysfunction mediated-apoptosis induced by NaIO3; it was mediated by significantly reduced NaIO3-upregulated ROS, cellular H2O2 production and improved downregulated glutathione and catalase activities. Furthermore, we found that BM could suppress the expression of Bax, cleaved PARP, and cleaved caspase-3 by decreasing phosphorylation of MEK/ERK and p53 expression in NaIO3-induced ARPE-19 cells. At the same time, we also used MEK inhibitors (PD98059) to confirm the above phenomenon. Moreover, our animal experiments revealed that BM prevented NaIO3 from causing retinal deformation; it led to thicker outer and inner nuclear layers and downregulated cleaved caspase-3 expression compared to the group receiving NaIO3 only. Collectively, these results suggest that BM can protect the RPE and retina from NaIO3-induced apoptosis through ROS-mediated mitochondrial dysfunction involving the MEK/ERK and p53 signaling pathways.


Assuntos
Doenças Mitocondriais , Proteína Supressora de Tumor p53 , Animais , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Epitélio Pigmentado da Retina , Peróxido de Hidrogênio/metabolismo , Apoptose , Estresse Oxidativo , Transdução de Sinais , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
3.
Biochem Biophys Res Commun ; 617(Pt 2): 11-17, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35689837

RESUMO

Exposure to particulate matter 2.5 (PM2.5) has been linked to ocular surface diseases, yet knowledge of the molecular mechanism impacted on retina pathogenesis is limited. Therefore, the purpose of this study was to explore the effects and involved factors of PM2.5 exposure in human retinal pigment epithelial APRE-19 cells. Our data revealed a decreased cell viability and an increased migratory ability in APRE-19 cells after PM2.5 stimulation. The MMP-2 and MMP-9 protein levels were markedly increased while the MMPs regulators TIMP-1 and TIMP-2 were significantly reduced in PM2.5-exposed APRE-19 cells. PM2.5 also increased pro-MMP-2 expression in the cell culture supernatants. Additionally, PM2.5 promoted the EMT markers through the activation of PI3K/AKT/mTOR pathway. Moreover, the ICAM-1 production was also remarkably increased by PM2.5 but reduced by PI3K/AKT inhibitor LY294002 in APRE-19 cells. Taken together, these results suggest that PM2.5 promotes EMT in a PI3K/AKT/mTOR-dependent manner in the retinal pigment epithelium.


Assuntos
Material Particulado , Fosfatidilinositol 3-Quinases , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Material Particulado/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
Oxid Med Cell Longev ; 2022: 4978556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308172

RESUMO

Brain inflammation, a pathological feature of neurodegenerative disorders, exhibits elevated microglial activity and increased levels of inflammatory factors. The present study was aimed at assessing the anti-inflammatory response of tetrahydrocurcumin (THC), the primary hydrogenated metabolite of curcumin, which was applied to treat Pseudomonas aeruginosa (P.a.) lipopolysaccharide- (LPS-) stimulated BV2 microglial cells. THC reduced P.a. LPS-induced mortality and the production of inflammatory mediators IL-6, TNF-α, MIP-2, IP-10, and nitrite. A further investigation revealed that THC decreased these inflammatory cytokines synergistically with JAK/STAT signaling inhibitors. THC also increased Nrf2/HO-1 signaling transduction which inhibits iNOS/COX-2/pNFκB cascades. Additionally, the presence of the HO-1 inhibitor Snpp increased the levels of IP-10, IL-6, and nitrite while THC treatment reduced those inflammatory factors in P.a. LPS-stimulated BV2 cells. In summary, we demonstrated that THC exhibits anti-inflammatory activities in P.a. LPS-induced inflammation in brain microglial cells by inhibiting STAT1/3-dependent NF-κB activation and inducing Nrf2-mediated HO-1 expression.


Assuntos
Curcumina , Inflamação , Animais , Curcumina/análogos & derivados , Curcumina/metabolismo , Curcumina/farmacologia , Heme Oxigenase-1/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Janus Quinase 1 , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Pseudomonas aeruginosa
5.
Antioxidants (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34942973

RESUMO

It is well known that age-related macular degeneration (AMD) is an irreversible neurodegenerative disease that can cause blindness in the elderly. Oxidative stress-induced retinal pigment epithelial (RPE) cell damage is a part of the pathogenesis of AMD. In this study, we evaluated the protective effect and mechanisms of alpha-mangostin (α-mangostin, α-MG) against NaIO3-induced reactive oxygen species (ROS)-dependent toxicity, which activates apoptosis in vivo and in vitro. MTT assay and flow cytometry demonstrated that the pretreatment of ARPE-19 cells with α-MG (0, 3.75, 7.5, and 15 µM) significantly increased cell viability and reduced apoptosis from NaIO3-induced oxidative stress in a concentration-dependent manner, which was achieved by the inhibition of Bax, cleaved PARP-1, cleaved caspase-3 protein expression, and enhancement of Bcl-2 protein. Furthermore, pre-incubation of ARPE-19 cells with α-MG markedly inhibited the intracellular ROS and extracellular H2O2 generation via blocking of the abnormal enzyme activities of superoxide dismutase (SOD), the downregulated levels of catalase (CAT), and the endogenous antioxidant, glutathione (GSH), which were regulated by decreasing PI3K-AKT-PGC-1α-STRT-3 signaling in ARPE-19 cells. In addition, our in vivo results indicated that α-MG improved retinal deformation and increased the thickness of both the outer nuclear layer and inner nuclear layer by inhibiting the expression of cleaved caspase-3 protein. Taken together, our results suggest that α-MG effectively protects human ARPE-19 cells from NaIO3-induced oxidative damage via antiapoptotic and antioxidant effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...