Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(12): 13994-14004, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559919

RESUMO

Pyridinic N-type doped at carbon has been known to have better electrocatalytic activity toward the oxygen reduction reaction (ORR) than the others. Herein, we proposed to prepare pyridinic N doped at carbon aerogels (CaA) derived from biomass, i.e., coir fiber (CF) and palm empty fruit bunches (PEFBs), by adjusting the pyrolysis temperature during carbonization of the biomass-based-cellulose aerogels. The cellulose aerogels were prepared by the ammonia-urea system as the cellulose solvent, in which ammonia also acted as a N source for doping and urea as the cellulose cross-linker. The as-prepared cellulose aerogels were directly pyrolyzed to produce N-doped CaA. It was found that the type of N doping is dominated by pyrrolic N at pyrolysis temperature of 600 °C, pyridinic N at 700 °C, and graphitic N at 800 °C. The pyridinic N exhibited better performance as an electrocatalyst for the ORR than pyrrolic N and graphitic N. The ORR using pyridinic N follows the four-electron pathway, which quantitatively implies a more electrochemically stable process. When used as a cathode for the Mg-air battery using a 3.5% NaCl electrolyte, the pyridinic N CaA exhibited excellent performance by giving a cell voltage of approximately 1.1 V and delivered a high discharge capacity of 411.64 mA h g-1 for CF and 492.64 mA h g-1 for PEFB corresponding to an energy density of 464.23 and 529.49 mW h g-1, respectively.

2.
ACS Appl Mater Interfaces ; 16(3): 3476-3488, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207165

RESUMO

In this study, a trimetallic selenide material with a hollow spherical structure (Co9Se8-CuSe2-WSe2) was synthesized through two consecutive solvothermal reactions. The synergistic effect between the quaternary elements, the benefits of the selenization of metals, and the unique morphology led to the prominent electrocatalytic ability of Co9Se8-CuSe2-WSe2 hollow spheres. Co9Se8-CuSe2-WSe2 hollow spheres were then mixed with oxygen plasma-treated multiwalled carbon nanotubes (MWCNT) as counter electrode (CE) material for dye-sensitized solar cells (DSSCs), achieving a photoelectric conversion efficiency (η) of 9.23% under one sun condition (AM 1.5G, 100 mW cm-2), surpassing the 8.08% of devices with platinum counter electrodes (PtCEs). For indoor conditions, a T5 light source was applied to the DSSCs with Co9Se8-CuSe2-WSe2 + MWCNT CE, and the efficiency increased to 14.14% under 3600 lx irradiance. Finally, Co9Se8-CuSe2-WSe2 + MWCNT CE demonstrated good stability with 92.23% retention after 1000 cycles of cyclic voltammetry, exceeding the 82.49% of PtCE. Therefore, Co9Se8-CuSe2-WSe2 + MWCNT shows potential as a substitute for platinum as CE material for DSSCs.

3.
ACS Appl Mater Interfaces ; 15(36): 42520-42531, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655434

RESUMO

Dissolved oxygen (DO) is a key parameter in assessing water quality, particularly in aquatic ecosystems. The oxygen reduction reaction (ORR) has notable prevalence in energy conversion and biological processes, including biosensing. Nevertheless, the long-term usage of the submersible DO sensors leads to undesirable biofilm formation on the electrode surface, deteriorating their sensitivity and stability. Recently, the reactive oxygen species (ROS), such as the two-electron pathway ORR byproduct, H2O2, had been known for its biofilm-degradation activity. Herein, for the first time, we reported N-doped reduced graphene oxide (N-rGO) for H2O2 selectivity as the self-antibiofouling DO sensor. Introducing foreign atom doping could reorient the electron network of graphene by the electronegativity gap, which facilitated highly selective and efficient two electron pathway of ORR. Mitigating the N content of N-rGO had enhanced the H2O2 selectivity (57.5%) and electron transfer number (n = 2.84) in neutral medium. Moreover, the N-rGO could be integrated to a wireless DO monitoring device that might realize an applicable device in the aquatic fish farming.

4.
J Colloid Interface Sci ; 648: 193-202, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301144

RESUMO

High energy resource demand has led to the rapid development of hydrogen as a clean fuel through electrolytic water splitting. The exploration of high-performance and cost-effective electrocatalysts for water splitting is a challenging task to obtain renewable and clean energy. However, the sluggish kinetics of oxygen evolution reaction (OER) greatly hindered its application. Herein, a novel oxygen plasma-treated graphene quantum dots embedded Ni-Fe Prussian blue analogue (O-GQD-NiFe PBA) is proposed as a highly active electrocatalysts for OER. Furthermore, the defect induced by GQD can provide an abundant lattice mismatch in the matrix of NiFe PBA, which further facilitates faster electron transport and kinetic performance. After optimization, the as-assembled O-GQD-NiFe PBA exhibits excellent electrocatalytic performance towards OER with a low overpotential of 259 mV for reaching a current density of 10 mA cm-2 and impressive long-term stability for 100 h in an alkaline solution. This work broadens the scope of metal-organic frameworks (MOF) and high-functioning carbon composite as an active material for energy conversion systems.

5.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432327

RESUMO

Flower-like phosphorus-doped nickel oxide (P-NiO) is proposed as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The flower-like nickel oxide essentially serves as the matrix for the CE, which is expected to promote a two-dimensional electron transport pathway. The phosphorus is intended to improve the catalytic ability by creating more active sites in the NiO for the catalysis of triiodide ions (I3-) to iodide ions (I-) on the surface of the CE. The P-NiO is controlled by a sequencing of precursor concentration, which allows the P-NiO to possess different features. The debris aggregation occurs in the P-NiO-1, while the P-NiO-0.75 leads to the incomplete flower-like nanosheets. The complete flower-like morphology can be observed in the P-NiO-0.5, P-NiO-0.25 and P-NiO-0.1 catalytic electrodes. The DSSC with the P-NiO-0.5 CE achieves a power conversion efficiency (η) of 9.05%, which is better than that of the DSSC using a Pt CE (η = 8.51%); it also performs better than that with the Pt CE, even under rear illumination and dim light conditions. The results indicate the promising potential of the P-NiO CE to replace the expensive Pt CE.

6.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080007

RESUMO

Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the "hydrogen energy economy" involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated.

7.
ACS Appl Mater Interfaces ; 12(40): 44597-44607, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894678

RESUMO

In this study, we demonstrate a facile, one-pot, and low-temperature (∼85 °C) chemical bath method for the preparation of a composite of cobalt selenide/graphene (Co0.85Se/Gr) as the electrocatalyst for the counter electrode (CE) of dye-sensitized solar cells (DSSCs) with a cobalt-based electrolyte. The Co0.85Se/Gr composite film was envisaged to have the advantages of both components, that is, the high electrochemical surface area of Co0.85Se and the straight paths for electron transfer from Gr. The DSSCs with Co0.85Se/Gr exhibited a power conversion efficiency (η) of 11.26%. According to the results of the rotating disk electrode, the film of Co0.85Se/Gr showed a high electrocatalytic surface area (Ae) and an extremely large intrinsic heterogeneous rate constant (k0). Furthermore, the composite film of Co0.85Se/Gr exhibits a high transparency in the wavelength region of 400-800 nm (>82%), which implied that the corresponding electrode shall be a potential CE in rear-side illuminated DSSCs. The photovoltaic parameters of the DSSCs with Pt, Co0.85Se, Gr, and Co0.85Se/Gr were obtained for rear-side illumination and additionally for front- and rear-side illuminations (AM 1.5, 100 mW/cm2) using different electrolytes. As the cobalt-based electrolyte of [Co(bpy)3]2+/3+ exhibited a low light absorption and low overpotential for dye regeneration, a rear-side illuminated DSSC with a cobalt-based electrolyte showed the highest efficiency of 9.43 ± 0.02%, which is greater than that of the DSSC with an I-/I3--based electrolyte (η = 7.63 ± 0.04%).

8.
ACS Appl Mater Interfaces ; 12(38): 42634-42643, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32845608

RESUMO

To obtain renewable and clean fuels, exploration of effective electrocatalysts is highly desirable due to the sluggish kinetics of water splitting. In this study, the oxygen plasma-activated hybrid structure of Ni-Fe Prussian blue analogue (PBA) interconnected by carbon nanotubes (O-CNT/NiFe) is reported as a highly effective electrocatalytic material for the oxygen evolution reaction (OER). The electrocatalytic performance is significantly influenced by different mass ratios of CNTs to Ni-Fe PBA. Benefiting from the conductive and oxygen plasma-activated CNTs as well as ordered and distributed metal sites in the framework, the optimized O-CNT/NiFe 1:18 exhibits a competitive overpotential of 279 mV at a current density of 10 mA cm-2 and a low Tafel slope of 42.8 mV dec-1 in 1.0 M KOH. Furthermore, the composite shows superior durability for at least 100 h. These results suggest that the O-CNT/NiFe 1:18 possesses promising potential as a highly active electrocatalyst.

9.
ACS Nano ; 14(7): 9050-9058, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32627531

RESUMO

The triboelectric nanogenerator (TENG) has been proved to be a green and efficient energy harnessing technology for electricity generation from ambient mechanical motions based on its ability to leverage the triboelectrification process. Enhancing TENG output performance through rational structural design still triggers increasing research interest. Here, we report a ternary electrification layered architecture beyond the current binary TENG systems, with improved performance for mechanical energy harvesting. Introducing a ternary Kapton layer into the traditional binary electrification layered architecture of TENGs consisting of copper and fluorinated ethylene propylene, yields a 2.5 times enhancement of peak power output, representing a 6.29-fold increase compared to the TENG composed of copper and Kapton. A wide-range of material configurations were systematically tested using this ternary electrification layered architecture to prove its practical effectiveness. The ternary electrification layered architecture invented in this work provides an alternative strategy to enhance TENG output performance, which represents a solid step for TENGs application in high-performance mechanical energy harvesting.

10.
ACS Appl Mater Interfaces ; 11(28): 25090-25099, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31117438

RESUMO

In this study, a transition-metal selenide, vanadium diselenide (VSe2), with various morphologies was synthesized by employing a surfactant-free hydrothermal method under varied temperature conditions (190-220 °C). Although the physical properties of VSe2 have been studied before, only limited morphological change or application were explored. This study, for the first time, applied VSe2 as the electrocatalytic counter electrode (CE) in dye-sensitized solar cells (DSSCs) and showed an attractive cell efficiency. The mechanism of forming the tunable VSe2 morphologies is proposed. The evaluation of solar cell efficiency shows the correlation between morphology and electrocatalytic properties. It was further shown that VSe2-200 with the cauliflower-like morphology shows the highest cell performance of DSSC with an efficiency of 9.23 ± 0.07% under 1 sun irradiance, superior to that of the Pt-based DSSC (8.48 ± 0.08%). An electrochemical technique equipped with a rotating disk electrode system was introduced to confirm the high electrocatalytic performance with this particular morphology. The optimized VSe2 demonstrated good long-term stability with 78% retention after 500 cycles of the consecutive cyclic voltammetry, compared to 60% for the Pt CE. The control in morphology in vanadium diselenide synthesis and its usage in Pt-free CE DSSC have advanced the progress in electrochemistry.

11.
ACS Appl Mater Interfaces ; 10(44): 38394-38403, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30360070

RESUMO

A family of new polymeric dispersants, branched poly(oxyethylene)-segmented esters of trimellitic anhydride adduct (polyethylene glycol-trimethylolpropane-trimellitic anhydride, designated as PTT), were synthesized and utilized to homogeneously disperse TiO2 nanoparticles. The weight fraction of poly(oxyethylene)-segment in the dispersants and the molecular architecture in favoring the branched shape are two predominant factors for designing the effective dispersants. In particular, the poly(oxyethylene) block of 1000 g/mol from PEG1000 as the starting material and a total molecular weight of 12 000 g/mol have constituted the polymeric dispersants for the best performance for homogenizing TiO2 nanoparticles. The dispersant structures were characterized by using Fourier-transform infrared spectroscopy, acid value determination, and gel permeation chromatography. The TiO2 dispersibility was evaluated by dynamic light scattering and transmission electron microscopy. The synthesized dispersants were utilized to homogenize the as-prepared TiO2, further fabricated into films of photoanodes for dye-sensitized solar cells (DSSCs). The ultimate performance of DSSC was measured to be 8.17 ± 0.13% for the device efficiency (η) which was significantly higher than the conventional TiO2 photoanode at η = 7.14 ± 0.12%. The photoanode film was characterized by X-ray diffraction, Brunauer-Emmett-Teller surface area, and dye-loading amount measurements. The kinetics of photogenerated electron in the photoanode, including electron lifetime and electron transit time of the film, was studied via electrochemical impedance spectroscopy, intensity-modulated photocurrent spectroscopy, and intensity-modulated photovoltage spectroscopy.

12.
Sci Robot ; 3(20)2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-33141730

RESUMO

The auditory system is the most efficient and straightforward communication strategy for connecting human beings and robots. Here, we designed a self-powered triboelectric auditory sensor (TAS) for constructing an electronic auditory system and an architecture for an external hearing aid in intelligent robotic applications. Based on newly developed triboelectric nanogenerator (TENG) technology, the TAS showed ultrahigh sensitivity (110 millivolts/decibel). A TAS with the broadband response from 100 to 5000 hertz was achieved by designing the annular or sectorial inner boundary architecture with systematic optimization. When incorporated with intelligent robotic devices, TAS demonstrated high-quality music recording and accurate voice recognition for realizing intelligent human-robot interaction. Furthermore, the tunable resonant frequency of TAS was achieved by adjusting the geometric design of inner boundary architecture, which could be used to amplify a specific sound wave naturally. On the basis of this unique property, we propose a hearing aid with the TENG technique, which can simplify the signal processing circuit and reduce the power consuming. This work expresses notable advantages of using TENG technology to build a new generation of auditory systems for meeting the challenges in social robotics.

13.
ACS Nano ; 11(5): 4475-4482, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28401759

RESUMO

The development of lightweight, superportable, and sustainable power sources has become an urgent need for most modern personal electronics. Here, we report a cut-paper-based self-charging power unit (PC-SCPU) that is capable of simultaneously harvesting and storing energy from body movement by combining a paper-based triboelectric nanogenerator (TENG) and a supercapacitor (SC), respectively. Utilizing the paper as the substrate with an assembled cut-paper architecture, an ultralight rhombic-shaped TENG is achieved with highly specific mass/volume charge output (82 nC g-1/75 nC cm-3) compared with the traditional acrylic-based TENG (5.7 nC g-1/5.8 nC cm-3), which can effectively charge the SC (∼1 mF) to ∼1 V in minutes. This wallet-contained PC-SCPU is then demonstrated as a sustainable power source for driving wearable and portable electronic devices such as a wireless remote control, electric watch, or temperature sensor. This study presents a potential paper-based portable SCPU for practical and medical applications.


Assuntos
Fontes de Energia Bioelétrica/economia , Eletrônica/instrumentação , Nanotecnologia/instrumentação , Fontes de Energia Elétrica , Eletricidade , Desenho de Equipamento
14.
ACS Nano ; 10(11): 10580-10588, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27934070

RESUMO

Recently, a self-charging power unit consisting of an energy harvesting device and an energy storage device set the foundation for building a self-powered wearable system. However, the flexibility of the power unit working under extremely complex deformations (e.g., stretching, twisting, and bending) becomes a key issue. Here, we present a prototype of an all-in-one shape-adaptive self-charging power unit that can be used for scavenging random body motion energy under complex mechanical deformations and then directly storing it in a supercapacitor unit to build up a self-powered system for wearable electronics. A kirigami paper based supercapacitor (KP-SC) was designed to work as the flexible energy storage device (stretchability up to 215%). An ultrastretchable and shape-adaptive silicone rubber triboelectric nanogenerator (SR-TENG) was utilized as the flexible energy harvesting device. By combining them with a rectifier, a stretchable, twistable, and bendable, self-charging power package was achieved for sustainably driving wearable electronics. This work provides a potential platform for the flexible self-powered systems.

15.
Sci Adv ; 2(10): e1600097, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27819039

RESUMO

Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all-fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.

16.
Sci Adv ; 2(6): e1501624, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27386560

RESUMO

The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.


Assuntos
Técnicas Eletroquímicas , Desenho de Equipamento , Polímeros/química , Alumínio/química , Fenômenos Biomecânicos , Condutividade Elétrica , Eletrodos , Nanoestruturas/química , Nylons/química
17.
ACS Nano ; 10(7): 6526-34, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27267558

RESUMO

Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (<100 rpm) or motion frequencies (<2 Hz) energy, which fits the frequency range for most of the water wave based blue energy, while W-EMG is able to produce larger output at high frequencies (>10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.

18.
ACS Nano ; 10(4): 4797-805, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27077467

RESUMO

Electromagnetic generators (EMGs) and triboelectric nanogenerators (TENGs) are the two most powerful approaches for harvesting ambient mechanical energy, but the effectiveness of each depends on the triggering frequency. Here, after systematically comparing the performances of EMGs and TENGs under low-frequency motion (<5 Hz), we demonstrated that the output performance of EMGs is proportional to the square of the frequency, while that of TENGs is approximately in proportion to the frequency. Therefore, the TENG has a much better performance than that of the EMG at low frequency (typically 0.1-3 Hz). Importantly, the extremely small output voltage of the EMG at low frequency makes it almost inapplicable to drive any electronic unit that requires a certain threshold voltage (∼0.2-4 V), so that most of the harvested energy is wasted. In contrast, a TENG has an output voltage that is usually high enough (>10-100 V) and independent of frequency so that most of the generated power can be effectively used to power the devices. Furthermore, a TENG also has advantages of light weight, low cost, and easy scale up through advanced structure designs. All these merits verify the possible killer application of a TENG for harvesting energy at low frequency from motions such as human motions for powering small electronics and possibly ocean waves for large-scale blue energy.

19.
Adv Mater ; 28(15): 2983-91, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26913810

RESUMO

A fundamentally new working principle into the field of self-powered heavy-metal-ion detection and removal using the triboelectrification effect is introduced. The as-developed tribo-nanosensors can selectively detect common heavy metal ions. The water-driven triboelectric nanogenerator is taken as a sustainable power source for heavy-metal-ion removal by recycling the kinetic energy from flowing wastewater.


Assuntos
Eletricidade , Metais Pesados/análise , Metais Pesados/isolamento & purificação , Nanotecnologia/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Óxido de Alumínio/química , Eletrodos , Nanotecnologia/instrumentação , Porosidade
20.
ACS Nano ; 9(11): 11056-63, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26469374

RESUMO

Micro total analysis system (µTAS) is one of the important tools for modern analytical sciences. In this paper, we not only propose the concept of integrating the self-powered triboelectric microfluidic nanosensor (TMN) with µTAS, but also demonstrate that the developed system can be used as an in situ tool to quantify the flowing liquid for microfluidics and solution chemistry. The TMN automatically generates electric outputs when the fluid passing through it and the outputs are affected by the solution temperature, polarity, ionic concentration, and fluid flow velocity. The self-powered TMN can detect the flowing water velocity, position, reaction temperature, ethanol, and salt concentrations. We also integrate the TMNs in a µTAS platform to directly characterize the synthesis of Au nanoparticles by a chemical reduction method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...