Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 34(1)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37935390

RESUMO

GM1 is a major brain ganglioside that exerts neurotrophic, neuroprotective and antineuroinflammatory effects. The aim of this study was to obtain insights into the antineuroinflammatory mechanisms of exogenous GM1 in lipopolysaccharide (LPS)-stimulated MG6 mouse transformed microglial cell line. First, we found that GM1 prevented the LPS-induced transformation of microglia into an amoeboid-like shape. GM1 treatment inhibited LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), and proinflammatory cytokines such as TNF-α, IL-1ß and IL-6 in MG6 cells. In LPS-treated mice, GM1 also reduced striatal microglia activation and attenuated COX-2 expression. Subsequent mechanistic studies showed that GM1 suppressed LPS-induced nuclear translocation of nuclear factor κB (NF-κB) and activator protein-1 (AP-1), two critical transcription factors responsible for the production of proinflammatory mediators. GM1 exhibited antineuroinflammatory properties by suppressing Akt/NF-κB signaling and the activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, GM1 suppressed LPS-induced activation of transforming growth factor-ß-activated kinase 1 (TAK1) and NADPH oxidase 2 (NOX2), upstream regulators of the IκBα/NF-κB and MAPK/AP-1 signaling pathways. GM1 also inhibited NOX-mediated reactive oxygen species (ROS) production and protected against LPS-induced MG6 cell death, suggesting an antioxidant role of GM1. In conclusion, GM1 exerts both antineuroinflammatory and antioxidative effects by inhibiting Akt, TAK1 and NOX2 activation.


Assuntos
Microglia , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Microglia/metabolismo , Gangliosídeo G(M1)/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Fosforilação , Estresse Oxidativo
2.
Chem Res Toxicol ; 33(4): 903-914, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32186374

RESUMO

Methylenedioxymethamphetamine (MDMA) is a psychostimulant with high abuse potential and severe neurotoxicity. According to our previous study, MDMA promotes autophagosome accumulation and contributes to cell death in cultured cortical and serotonergic neurons. However, the detailed mechanism underlying autophagy dysfunction remains unclear. Lysosomes play an important role in autophagic degradation. The present study aimed to examine the role of lysosomal function in autophagic flux in neuronal cultures exposed to MDMA. We showed that MDMA induced enlarged vesicles that accumulate in SH-SY5Y neuroblastoma cells. In addition, we demonstrated that MDMA stimulated dynamin-dependent but clathrin-independent endocytosis, which might contribute to vacuole expansion. Morphological and Western blot analyses revealed that MDMA induced lysosomal swelling, whereas the activity of the lysosomal hydrolytic enzymes cathepsin B and cathepsin D was decreased in SH-SY5Y and cultured cortical neurons, which might lead to autophagosome accumulation and autophagic degradation blockage. Intriguingly, inactivation of cathepsins B and D led to cell death and autophagy-lysosomal dysregulation, which mimicked MDMA-induced neurotoxicity. Consequently, impairment of lysosomal proteolysis and blockage of autophagy degradation contributed to MDMA-induced neurotoxicity in neuronal cultures.


Assuntos
Autofagia/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Lisossomos/metabolismo , Neurônios/metabolismo , Células Tumorais Cultivadas
3.
Pharmacol Res ; 142: 283-293, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30826457

RESUMO

The 3,4-methylenedioxymethamphetamine (MDMA) is a popular recreational drug, which ultimately leads to serotonergic (5-HT) neurotoxicity and psychiatric disorders. Previous in vitro studies have consistently demonstrated that MDMA provokes autophagic activation, as well as damage of 5-HT axons and nerve fibers. So far, whether autophagy, a well-conserved cellular process that is critical for cell fate, also participates in MDMA-induced neurotoxicity in vivo remains elusive. Here, we first examined time-course of autophagy-related changes during repeated administration of MDMA (10 mg/kg s.c. twice daily for 4 consecutive days) using immunofluorescent staining for tryptophan hydroxylase and microtubule-associated protein 1 light chain 3 beta in rats. We also evaluated the protective effects of 3-methyadanine (3-MA, an autophagy inhibitor, 15 mg/kg i.p.) against MDMA-induced acute and long-term reductions in serotonin transporters (SERT) density in various brain regions using immunohistochemical staining and positron emission tomography (PET) imaging respectively. Plasma corticosterone measurements and forced swim tests were performed to evaluate the depressive performance. The staining results showed that repeated administration of MDMA increased expression of autophagosome and caused reduction in SERT densities of striatum and frontal cortex, which was ameliorated in the presence of 3-MA. PET imaging data also revealed that 3-MA could ameliorate MDMA-induced long-term decreased SERT availability in various brain regions of rats. Furthermore, immobility time of forced swim tests and plasma corticosterone levels were less in the group of MDMA co-injected with 3-MA compared with that of MDMA group. Together, these findings suggest that autophagy inhibition may confer protection against neurobiological and behavioral changes induced by MDMA.


Assuntos
Autofagia , Encéfalo/metabolismo , Depressão/metabolismo , N-Metil-3,4-Metilenodioxianfetamina , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Depressão/tratamento farmacológico , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Neurônios Serotoninérgicos/efeitos dos fármacos
4.
Talanta ; 115: 718-23, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24054653

RESUMO

We have demonstrated sensitive detections of hydrogen peroxide (H2O2) and glucose using reduced graphene oxide decorated with carbon dots (C-dots@RGO). The C-dots@RGO prepared from catechin (reducing agent and carbon source) and graphene oxide via hydrothermal routes possesses excitation-wavelength-dependence photoluminescence (PL) characteristics, with maximum excitation and emission wavelengths of 365 and 440 nm, respectively. The C-dots@RGO is stable in solution containing NaCl up to 350 mM, but is quenched by reactive oxygen species (ROS). ROS reacts with H2O2 and thus its PL quenching toward the C-dots@RGO is minimized. When using C-dots@RGO and glucose oxidase (GOx), the PL assay allows detection of glucose in the presence of 10 µM of bovine serum albumin, with linearity over a concentration range from 1 to 60 µM (r=0.99) and a limit of detection (at a signal-to-noise ratio of 3) of 140 nM. The practicality of this assay has been validated by determining the concentrations of glucose in serum and saliva samples, with results of 5.1 ± 0.6mM (n=3) and 117.9 ± 8.1 µM (n=3), respectively. Our simple and sensitive assay opens a new avenue of developing assays for various analytes using C-dots@RGO in conjunction with different enzymes.


Assuntos
Glicemia/análise , Peróxido de Hidrogênio/sangue , Medições Luminescentes/métodos , Saliva/química , Adulto , Animais , Catequina/química , Bovinos , Eletrodos , Glucose Oxidase/química , Grafite/química , Humanos , Limite de Detecção , Masculino , Óxidos , Processos Fotoquímicos , Soroalbumina Bovina/química , Razão Sinal-Ruído
5.
Nanoscale ; 5(11): 4691-5, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23636566

RESUMO

Photoluminescent gold nanodots (Au NDs) on aluminum oxide nanoparticles (Al2O3 NPs) with the emission wavelengths ranging from 510 to 630 nm are unveiled. Orange Al2O3 NP@AuNDs show high selectivity and sensitivity towards Ag(+) ions by metallophilic Ag(+)-Au(+) interactions and induced fluorescence quenching of Au NDs.


Assuntos
Óxido de Alumínio/química , Ouro/química , Nanopartículas Metálicas/química , Prata/análise , Catálise , Íons/química , Nanopartículas Metálicas/ultraestrutura , Espectrofotometria , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...