Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 263: 128364, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297279

RESUMO

Environmental contamination by antibiotics has become a global issue. Colistin, a cationic antimicrobial polypeptide, has been widely used in human/veterinary medicine, and growth promotion in aquaculture. However, no study has been conducted to test the toxic effects of colistin on aquatic animals. In this study, we examined the effects of colistin on zebrafish embryos. Zebrafish embryos were incubated in different concentrations (0, 0.01, 0.1, 1, 2, 3, and 10 µM) of colistin for 96 h. Colistin increased the mortality rate in a dose-dependent manner (LC50 was 3.0 µM or 3.5 mg L-1), but it did not change the hatching rate, heart rate, body length, eye size, or yolk size of embryos. However, colistin impaired keratinocytes and lateral-line hair cells in the skin of embryos. Colistin (at concentrations ≥0.1 µM) decreased the number of FM1-43-labeled hair cells and reduced the mechanotransduction-mediated Ca2+ influx at hair bundles, suggesting that sublethal concentrations of colistin can impair lateral line function. To investigate the lethal injury, morphological changes were sequentially observed in post-hatched embryos subjected to lethal concentrations of colistin. We found that skin keratinocytes were severely damaged and detached after exposure, leading to hypotonic swelling of the yolk sac, loss of ion contents, cell lysis, and eventual death. This study revealed that acute colistin exposure can impair skin cells and pose a threat to fish survival.


Assuntos
Sistema da Linha Lateral , Poluentes Químicos da Água , Animais , Colistina/toxicidade , Embrião não Mamífero , Humanos , Queratinócitos , Mecanotransdução Celular , Peixe-Zebra
2.
Aquat Toxicol ; 217: 105351, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31711007

RESUMO

Acidification of freshwater ecosystems is recognized as a global environmental problem. However, the influence of acidic water on the early stages of freshwater fish is still unclear. This study focused on the sublethal effects of acidic water on the lateral line system of zebrafish embryos. Zebrafish embryos were exposed to water at different pH values (pH 4, 5, 7, 9, and 10) for 96 (0-96 h post-fertilization (hpf)) and 48 h (48∼96 hpf). The survival rate, body length, and heart rate significantly decreased in pH 4-exposed embryos during the 96-h incubation. The number of lateral-line neuromasts and the size of otic vesicles/otoliths also decreased in pH 4-exposed embryos subjected to 96- and 48-h incubations. The number of neuromasts decreased in pH 5-exposed embryos during the 96-h incubation. Alkaline water (pH 9 and 10) did not influence embryonic development but suppressed the hatching process. The mechanotransducer channel-mediated Ca2+ influx was measured to reveal the function of lateral line hair cells. The Ca2+ influx of hair cells decreased in pH 5-exposed embryos subjected to the 48-h incubation, and both the number and Ca2+ influx of hair cells had decreased in pH 5-exposed embryos after 96 h of incubation. In addition, the number and function of hair cells were suppressed in H+-ATPase- or GCM2-knockdown embryos, which partially lost the ability to secrete acid into the ambient water. In conclusion, this study suggests that lateral line hair cells are sensitive to an acidic environment, and freshwater acidification could be a threat to the early stages of fishes.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Água Doce/química , Sistema da Linha Lateral/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Proteínas de Ligação a DNA/genética , Ecossistema , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Técnicas de Silenciamento de Genes , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/ultraestrutura , Ácido Clorídrico/administração & dosagem , Concentração de Íons de Hidrogênio , Mecanotransdução Celular/efeitos dos fármacos , Fatores de Transcrição/genética , ATPases Vacuolares Próton-Translocadoras/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
3.
Aquat Toxicol ; 215: 105273, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31445453

RESUMO

The potential toxicity of nanoparticles (NPs) to the early stages of fish is still unclear. In this study, we investigated the toxic effects of silver (AgNPs) and copper nanoparticles (CuNPs) on lateral-line hair cells of zebrafish embryos. Zebrafish embryos were incubated in different concentrations of AgNPs and CuNPs at 0˜96 h post-fertilization (hpf). Both AgNPs and CuNPs were found to cause toxic effects in zebrafish embryos in a dose-dependent manner. Values of the 96-h 50% lethal concentration (LC50) of AgNPs and CuNPs were 6.1 ppm (56.5 µM) and 2.61 ppm (41.1 µM), respectively. The number of FM1-43-labeled hair cells and the microstructure of hair bundles were significantly impaired by AgNPs [≥1 ppm (9.3 µM)] and CuNPs [≥0.01 ppm (0.16 µM)]. Ca2+ influxes at hair bundles of hair cells were measured with a scanning ion-selective microelectrode technique to evaluate the function of hair cells. AgNPs [≥0.1 ppm (0.9 µM)] and CuNPs [≥0.01 ppm (0.16 µM)] were both found to significantly reduce Ca2+ influxes. Similar toxic effects were also found in hatched embryos subjected to 4 h of exposure (96˜100 hpf) to AgNPs and CuNPs. This study revealed that lateral-line hair cells of zebrafish are susceptible to AgNPs and CuNPs, and these contaminants in aquatic environments could pose a threat to fish survival.


Assuntos
Cobre/toxicidade , Embrião não Mamífero/citologia , Células Ciliadas Auditivas/citologia , Sistema da Linha Lateral/embriologia , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/ultraestrutura , Exposição Ambiental , Células Ciliadas Auditivas/ultraestrutura , Dose Letal Mediana , Nanopartículas Metálicas/ultraestrutura , Análise de Sobrevida , Poluentes Químicos da Água/toxicidade
4.
Front Physiol ; 9: 649, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899708

RESUMO

The calcium-sensing receptor (CaSR) is an extracellular Ca2+ sensor that plays a critical role in maintaining Ca2+ homeostasis in several organs, including the parathyroid gland and kidneys. In this study, through in situ hybridization, the expression of CaSR mRNA was found in the neuromasts of zebrafish larvae. Immunohistochemistry further demonstrated that the CaSR protein was present in neuromast hair cell stereocilia and basolateral membranes. Based on the expression and subcellular localization of the CaSR in hair cells, we hypothesized that the CaSR is expressed in zebrafish lateral-line hair cells to regulate mechanotransducer (MET)-channel-mediated Ca2+ entry. Using the scanning ion-selective electrode technique, MET-channel-mediated Ca2+ influx at the stereocilia of hair cells was measured in intact larvae. Ca2+ influx was suppressed after larvae were pretreated with a CaSR activator (R-568) or high-Ca2+ (HCa) medium. Gene knockdown by using morpholino oligonucleotides decreased CaSR expression in hair cells and eliminated the effects of R-568 and HCa on Ca2+ influx. In addition, we found that treatment with R-568 attenuated neomycin-induced hair cell death. This study is the first to demonstrate that the CaSR is involved in mechanotransduction in zebrafish hair cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...