Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 17(4): 857-871, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37339024

RESUMO

This article presents a multimodal electrochemical sensing system-on-chip (SoC), including the functions of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and temperature sensing. CV readout circuitry achieves an adaptive readout current range of 145.5 dB through an automatic range adjustment and resolution scaling technique. EIS has an impedance resolution of 9.2 m Ω/√ Hz at a sweep frequency of 10 kHz and an output current of up to 120 µA. With an impedance boost mechanism, the maximum detectable load impedance is extended to 22.95 k Ω, while the total harmonic distortion is less than 1%. A resistor-based temperature sensor using a swing-boosted relaxation oscillator can achieve a resolution of 31 mK in 0-85 °C. The design is implemented in a 0.18 µm CMOS process. The total power consumption is 1 mW.


Assuntos
Espectroscopia Dielétrica , Dispositivos Lab-On-A-Chip , Impedância Elétrica , Temperatura , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas Eletroquímicas
2.
IEEE Trans Biomed Circuits Syst ; 15(6): 1268-1282, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34752402

RESUMO

Multimodal sensing can provide a comprehensive and accurate diagnosis of biological information. This paper presents a fully integrated wireless multimodal sensing chip with voltammetric electrochemical sensing at a scanning rate range of 0.08-400 V/s, temperature monitoring, and bi-phasic electrical stimulation for wound healing progress monitoring. The time-based readout circuitry can achieve a 1-20X scalable resolution through dynamic threshold voltage adjustment. A low-noise analog waveform generator is designed using current reducer techniques to eliminate the large passive components. The chip is fabricated via a 0.18 µm CMOS process. The design achieves R2 linearity of 0.995 over a wide current detection range (2 pA-12 µA) while consuming 49 µW at 1.2 V supply. The temperature sensing circuit achieves a 43 mK resolution from 20 to 80 degrees. The current stimulator provides an output current ranging from 8 µA to 1 mA in an impedance range of up to 3 kΩ. A wakeup receiver with data correlators is used to control the operation modes. The sensing data are wirelessly transmitted to the external readers. The proposed sensing IC is verified for measuring critical biomarkers, including C-reactive protein, uric acid, and temperature.


Assuntos
Dispositivos Lab-On-A-Chip , Impedância Elétrica , Estimulação Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...