Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1388384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799096

RESUMO

The rhizosphere is a complex ecosystem, consisting of a narrow soil zone influenced by plant roots and inhabited by soil-borne microorganisms. Plants actively shape the rhizosphere microbiome through root exudates. Some metabolites are signaling molecules specifically functioning as chemoattractants rather than nutrients. These elusive signaling molecules have been sought for several decades, and yet little progress has been made. Root-secreted nucleosides and deoxynucleosides were detected in exudates of various plants by targeted ultra-performance liquid chromatography-mass spectrometry/mass spectrometry. Rhizobacteria were isolated from the roots of Helianthemum sessiliflorum carrying the mycorrhizal desert truffle Terfezia boudieri. Chemotaxis was determined by a glass capillary assay or plate assays on semisolid agar and through a soil plate assay. Nucleosides were identified in root exudates of plants that inhabit diverse ecological niches. Nucleosides induced positive chemotaxis in plant beneficial bacteria Bacillus pumilus, Bacillus subtilis, Pseudomonas turukhanskensis spp., Serratia marcescens, and the pathogenic rhizobacterium Xanthomonas campestris and E coli. In a soil plate assay, nucleosides diffused to substantial distances and evoked chemotaxis under conditions as close as possible to natural environments. This study implies that root-secreted nucleosides are involved in the assembly of the rhizosphere bacterial community by inducing chemotaxis toward plant roots. In animals, nucleoside secretion known as "purinergic signaling" is involved in communication between cells, physiological processes, diseases, phagocytic cell migration, and bacterial activity. The coliform bacterium E. coli that inhabits the lower intestine of warm-blooded organisms also attracted to nucleosides, implying that nucleosides may serve as a common signal for bacterial species inhabiting distinct habitats. Taken together, all these may indicate that chemotaxis signaling by nucleosides is a conserved universal mechanism that encompasses living kingdoms and environments and should be given further attention in plant rhizosphere microbiome research.

2.
Biophys J ; 123(4): 502-508, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243596

RESUMO

Cell dimensions of rod-shaped bacteria such as Escherichia coli are connected to mass growth and chromosome replication. During their interdivision cycle (τ min), cells enlarge by elongation only, but at faster growth in richer media, they are also wider. Changes in width W upon nutritional shift-up (shortening τ) occur during the division process. The elusive signal directing the mechanism for W determination is likely related to the tightly linked duplications of the nucleoid (DNA) and the sacculus (peptidoglycan), the only two structures (macromolecules) existing in a single copy that are coupled, temporally and spatially. Six known parameters related to the nucleoid structure and replication are reasonable candidates to convey such a signal, all simple functions of the key number of replication positions n(=C/τ), the ratio between the rates of growth (τ-1) and of replication (C-1). The current analysis of available literature-recorded data discovered that, of these, nucleoid complexity NC[=(2n-1)/(n×ln2)] is by far the most likely parameter affecting cell width W. The exceedingly high correlations found between these two seemingly unrelated measures (NC and W) indicate that coupling between them is of major importance to the species' survival. As an exciting corollary, to the best of our knowledge, a new, indirect approach to estimate DNA replication rate is revealed. Potential involvement of DNA topoisomerases in W determination is also proposed and discussed.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Divisão Celular , Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Bactérias/genética , Cromossomos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo
3.
Brain ; 146(11): 4594-4607, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37394908

RESUMO

The current strategies to mitigate the toxicity of misfolded superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis via blocking SOD1 expression in the CNS are indiscriminative for misfolded and intact proteins, and as such, entail a risk of depriving CNS cells of their essential antioxidant potential. As an alternative approach to neutralize misfolded and spare unaffected SOD1 species, we developed scFv-SE21 antibody that blocks the ß6/ß7 loop epitope exposed exclusively in misfolded SOD1. The ß6/ß7 loop epitope has previously been proposed to initiate amyloid-like aggregation of misfolded SOD1 and mediate its prion-like activity. The adeno-associated virus-mediated expression of scFv-SE21 in the CNS of hSOD1G37R mice rescued spinal motor neurons, reduced the accumulation of misfolded SOD1, decreased gliosis and thus delayed disease onset and extended survival by 90 days. The results provide evidence for the role of the exposed ß6/ß7 loop epitope in the mechanism of neurotoxic gain-of-function of misfolded SOD1 and open avenues for the development of mechanism-based anti-SOD1 therapeutics, whose selective targeting of misfolded SOD1 species may entail a reduced risk of collateral oxidative damage to the CNS.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Epitopos , Fenótipo , Dobramento de Proteína , Modelos Animais de Doenças , Camundongos Transgênicos
4.
J Fungi (Basel) ; 8(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36294627

RESUMO

The desert truffle Terfezia boudieri is an ascomycete fungus that forms ect-endomycorrhiza in the roots of plants belonging to Cistaceae. The fungus forms hypogeous edible fruit bodies, appreciated as gourmet food. Truffles and host plants are colonized by various microbes, which may contribute to their development. However, the diversity and composition of the bacterial community under field conditions in the Negev desert are still unknown. The overall goal of this research was to identify the rhizosphere microbial community supporting the establishment of a symbiotic association between T. boudieri and Helianthemum sessiliflorum. The bacterial community was characterized by fruiting bodies, mycorrhized roots, and rhizosphere soil. Based on next-generation sequencing meta-analyses of the 16S rRNA gene, we discovered diverse bacterial communities of fruit bodies that differed from those found in the roots and rhizosphere. Families of Proteobacteria, Planctomycetes, and Actinobacteria were present in all four samples. Alpha diversity analysis revealed that the rhizosphere and roots contain significantly higher bacterial species numbers compared to the fruit. Additionally, ANOSIM and PCoA provided a comparative analysis of the bacterial taxa associated with fruiting bodies, roots, and rhizosphere. The core microbiome described consists of groups whose biological role triggers important traits supporting plant growth and fruit body development.

5.
ACS Chem Neurosci ; 12(1): 49-62, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33326235

RESUMO

Upon losing its structural integrity (misfolding), SOD1 acquires neurotoxic properties to become a pathogenic protein in ALS, a neurodegenerative disease targeting motor neurons; understanding the mechanism of misfolding may enable new treatment strategies for ALS. Here, we reported a monoclonal antibody, SE21, targeting the ß6/ß7-loop region of SOD1. The exposure of this region is coupled to metal loss and is entirely reversible during the early stages of misfolding. By using SE21 mAb, we demonstrated that, in apo-SOD1 incubated under the misfolding-promoting conditions, the reversible phase, during which SOD1 is capable of restoring its nativelike conformation in the presence of metals, is followed by an irreversible structural transition, autocatalytic in nature, which takes place prior to the onset of SOD1 aggregation and results in the formation of atypical apo-SOD1 that is unable to bind metals. The reversible phase defines a window of opportunity for pharmacological intervention using metal mimetics that stabilize SOD1 structure in its nativelike conformation to attenuate the spreading of the misfolding signal and disease progression by preventing the exposure of pathogenic SOD1 epitopes. Phenotypically similar apo-SOD1 species with impaired metal binding properties may also be produced via oxidation of Cys111, underscoring the diversity of SOD1 misfolding pathways.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/tratamento farmacológico , Humanos , Mutação , Dobramento de Proteína , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Zinco
6.
Genes (Basel) ; 11(11)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143066

RESUMO

Mycorrhizal desert truffles such as Terfezia boudieri, Tirmania nivea, and Terfezia claveryi, form mycorrhizal associations with plants of the Cistaceae family. These valued truffles are still collected from the wild and not cultivated under intensive farming due to the lack of basic knowledge about their biology at all levels. Recently, several genomes of desert truffles have been decoded, enabling researchers to attempt genetic manipulations to enable cultivation. To execute such manipulations, the development of molecular tools for genes transformation into truffles is needed. We developed an Agrobacterium tumefaciens-mediated genetic transformation system in T. boudieri. This system was optimized for the developmental stage of the mycelia explants, bacterial optical density, infection and co-cultivation durations, and concentrations of the selection antibiotics. The pFPL-Rh plasmid harboring hph gene conferring hygromycin resistance as a selection marker and the red fluorescent protein gene were used as visual reporters. The optimal conditions were incubation with 200 µM of acetosyringone, attaining a bacterial optical density of 0.3 OD600; transfer time of 45 min; and co-cultivation for 3 days. This is the first report on a transformation system for T. boudieri, and the proposed protocol can be adapted for the transformation of other important desert truffles as well as ectomycorrhizal species.


Assuntos
Agrobacterium tumefaciens/genética , Ascomicetos/genética , Transformação Genética/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Ascomicetos/crescimento & desenvolvimento , Cistaceae/microbiologia , Engenharia Genética/métodos , Micélio/genética , Micélio/crescimento & desenvolvimento , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento
7.
J Exp Biol ; 218(Pt 21): 3487-98, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26385331

RESUMO

Some crustaceans possess exoskeletons that are reinforced with calcium carbonate. In the crayfish Cherax quadricarinatus, the molar tooth, which is part of the mandibular exoskeleton, contains an unusual crystalline enamel-like apatite layer. As this layer resembles vertebrate enamel in composition and function, it offers an interesting example of convergent evolution. Unlike other parts of the crayfish exoskeleton, which is periodically shed and regenerated during the molt cycle, molar mineral deposition takes place during the pre-molt stage. The molar mineral composition transforms continuously from fluorapatite through amorphous calcium phosphate to amorphous calcium carbonate and is mounted on chitin. The process of crayfish molar formation is entirely extracellular and presumably controlled by proteins, lipids, polysaccharides, low-molecular weight molecules and calcium salts. We have identified a novel molar protein termed Cq-M15 from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. Its transcript and differential expression were confirmed by a next-generation sequencing library. The predicted acidic pI of Cq-M15 suggests its possible involvement in mineral arrangement. Cq-M15 is expressed in several exoskeletal tissues at pre-molt and its silencing is lethal. Like other arthropod cuticular proteins, Cq-M15 possesses a chitin-binding Rebers-Riddiford domain, with a recombinant version of the protein found to bind chitin. Cq-M15 was also found to interact with calcium ions in a concentration-dependent manner. This latter property might make Cq-M15 useful for bone and dental regenerative efforts. We suggest that, in the molar tooth, this protein might be involved in calcium phosphate and/or carbonate precipitation.


Assuntos
Exoesqueleto/química , Proteínas de Artrópodes/química , Astacoidea/anatomia & histologia , Quitina/química , Exoesqueleto/metabolismo , Animais , Apatitas/química , Apatitas/metabolismo , Proteínas de Artrópodes/genética , Astacoidea/crescimento & desenvolvimento , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo
8.
J Biol Chem ; 287(34): 28755-69, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22730328

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAc) glycosylation is a regulatory post-translational modification occurring on the serine or threonine residues of nucleocytoplasmic proteins. O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase and O-GlcNAcase (OGA), which are responsible for O-GlcNAc addition and removal, respectively. Although O-GlcNAcylation was found to play a significant role in several pathologies such as type II diabetes and neurodegenerative diseases, the role of O-GlcNAcylation in the etiology and progression of cancer remains vague. Here, we followed O-GlcNAcylation and its catalytic machinery in metastatic clones of human colorectal cancer and the effect of OGA knockdown on cellular phenotype and on the transcriptome. The colorectal cancer SW620 metastatic clone exhibited increased O-GlcNAcylation and decreased OGA expression compared with its primary clone, SW480. O-GlcNAcylation elevation in SW620 cells, through RNA interference of OGA, resulted in phenotypic alterations that included acquisition of a fibroblast-like morphology, which coincides with epithelial metastatic progression and growth retardation. Microarray analysis revealed that OGA silencing altered the expression of about 1300 genes, mostly involved in cell movement and growth, and specifically affected metabolic pathways of lipids and carbohydrates. These findings support the involvement of O-GlcNAcylation in various aspects of tumor cell physiology and suggest that this modification may serve as a link between metabolic changes and cancer.


Assuntos
Acetilglucosaminidase/biossíntese , Adenocarcinoma/enzimologia , Neoplasias do Colo/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Acetilglucosaminidase/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Inativação Gênica , Glicosilação , Humanos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Transcriptoma
9.
J Proteomics ; 75(9): 2629-37, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22484058

RESUMO

Caveolin-rich lipid rafts (CLRs) are thickened sections of the cell membrane that are composed of the integral membrane proteins caveolins together with saturated long chain fatty acids, cholesterol and lipids. Membrane proteins - lipid raft proteins in particular - may play important roles in cell signaling and cell-cell interaction. Due to their unique structure, CLRs seem to be the preferred docking site for specific proteins involved in focal adhesion and cancer metastasis. Our objective was thus to identify and quantify CLR proteins from primary and metastatic colorectal cancer (CRC) clones. We found differential expression of nine CLR proteins from primary and metastatic CRC clones. Among the identified proteins, an immune system inhibiting protein was significantly overexpressed in the metastatic clone, while cell adhesion and transport molecules were among the overexpressed proteins in the primary clone. All the identified CRL proteins are involved in tumorigenesis, specifically metastasis, and may thus serve as therapeutic targets. A novel concept for identification and quantification of CLR proteins with label-free mass spectrometry method was specifically examined in this study. Validation of the method against immunoblotting and FACS analysis indicates that it can be applied for the identification of novel biomarkers for cancer and metastasis.


Assuntos
Caveolinas/análise , Neoplasias Colorretais/metabolismo , Microdomínios da Membrana/química , Metástase Neoplásica/fisiopatologia , Proteínas de Transporte/imunologia , Caveolina 1/análise , Adesão Celular , Transformação Celular Neoplásica/metabolismo , Células Clonais , Neoplasias Colorretais/patologia , Humanos , Proteínas Mitocondriais/imunologia , Metástase Neoplásica/patologia , Proteômica , Espectrometria de Massas em Tandem , Células Tumorais Cultivadas
10.
J Cell Physiol ; 212(2): 551-61, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17503466

RESUMO

In a previous study, we presented evidence for the existence of a nucleotide-binding site (NBS) in the N-terminal region of the voltage-dependent anion channel (VDAC1). In this study, further localization and possible roles of the proposed VDAC1-NBS were investigated using site-directed mutagenesis. The predicated NBS of murine VDAC1 (mVDAC1) was mutated by replacing two glycine residues with alanines or a conserved lysine residue with a serine. Expression of the G21A,G23A- and K20S-mVDAC1s in human T-REx-293 cells in which endogenous VDAC1 expression had been silenced affected cell growth and cytosolic ATP levels. While G21A,G23A-mVDAC1-expressing cells displayed growth rates similar to native-mVDAC1-expressing cells, the K20S-mVDAC1-expressing cells displayed significantly retarded growth and increased resistance to cell death. Cells expressing either mVDAC1 mutant also displayed significantly reduced cellular ATP levels. When K20S-mutant mVDAC1 was expressed in porin1-less yeast, the transformed cells grew slower on non-fermentable carbon sources, while isolated mitochondria expressing either mVDAC1 mutant showed significant reduction in ATP synthesis. Purified K20S-mVDAC1 displayed a significant decrease in [alpha-(32)P]BzATP-binding and altered channel properties, that is, reduced ion selectivity, while the G21A,G23A-mutant protein displayed only a mild reduction in channel selectivity. These results suggest that mutations in the proposed VDAC1-NBS, particularly the K20S, altered channel activity, thereby interfering with VDAC function as the major pathway for the transport of metabolites and adenine nucleotides across the outer mitochondrial membrane. Finally, involvement of the VDAC1-NBS in the control of mitochondrial ATP synthesis, cell growth and viability is discussed.


Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Trifosfato de Adenosina/análogos & derivados , Alanina/química , Apoptose , Sítios de Ligação , Linhagem Celular , Proliferação de Células , Citosol/metabolismo , Glicina/química , Humanos , Lisina/química , Mitocôndrias/patologia , Mutação , Permeabilidade , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/química , Fatores de Tempo , Transfecção , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/genética
11.
J Biol Chem ; 281(9): 5938-46, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16354668

RESUMO

In this study, we addressed the presence and location of nucleotide-binding sites in the voltage-dependent anion channel (VDAC). VDAC bound to reactive red 120-agarose, from which it was eluted by ATP, less effectively by ADP and AMP, but not by NADH. The photoreactive ATP analog, benzoyl-benzoyl-ATP (BzATP), was used to identify and characterize the ATP-binding sites in VDAC. [alpha-(32)P]BzATP bound to purified VDAC at two or more binding sites with apparent high and low binding affinities. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of BzATP-labeled VDAC confirmed the binding of at least two BzATP molecules to VDAC. The VDAC BzATP-binding sites showed higher specificity for purine than for pyrimidine nucleotides and higher affinity for negatively charged nucleotide species. VDAC treatment with the lysyl residue modifying reagent, fluorescein 5'-isothiocyanate, markedly inhibited VDAC labeling with BzATP. The VDAC nucleotide-binding sites were localized using chemical and enzymatic cleavage. Digestion of [alpha-(32)P]BzATP-labeled VDAC with CNBr or V8 protease resulted in the appearance of approximately 17- and approximately 14-kDa labeled fragments. Further digestion, high performance liquid chromatography separation, and sequencing of the selected V8 peptides suggested that the labeled fragments originated from two different regions of the VDAC molecule. MALDI-TOF analysis of BzATP-labeled, tryptic VDAC fragments indicated and localized three nucleotide binding sites, two of which were at the N and C termini of VDAC. Thus, the presence of two or more nucleotide-binding sites in VDAC is suggested, and their possible function in the control of VDAC activity, and, thereby, of outer mitochondrial membrane permeability is discussed.


Assuntos
Nucleotídeos/metabolismo , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cátions Bivalentes/metabolismo , Brometo de Cianogênio/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Dados de Sequência Molecular , NAD/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Estrutura Secundária de Proteína , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Canais de Ânion Dependentes de Voltagem/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...