Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 49(19): 6848-6865, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32870222

RESUMO

Multivalency is nature's way to establish firm and specific interactions when the binding sites of a protein receptor have only low affinity for monovalent ligands. Recently, researchers are increasingly using nucleic acid architectures for multivalent ligand presentation to unravel the mechanisms of multivalency-enhanced interactions and create high affinity binding agents. In contrast to other polymers, nucleic acid materials are capable of accessing a wide variety of rigid three-dimensional structures through the sequence-programed self-assembly of component strands. By controlling the number of ligands and their distances, researchers can construct tailor-made probes for interrogating multivalent interactions with Ångstrom precision. Nucleic acid assemblies have been used to address fundamental questions of multivalency in order to unravel how monovalent interaction strength, scaffold flexibility, distances between interacting sites and spatial arrangement influence the achievable affinity gains. In a slightly different approach, nucleic acid constructs have been applied as chemical dimerizers of protein receptors, to investigate the importance of receptor proximity or construct tools that provide control over biological signal transduction processes. In this review, we discuss multivalent nucleic acid-ligand conjugates in the context of the biological protein receptors they interrogate. We recount pioneering work and seminal studies performed within the last 10 years describing the in vitro interrogation of proteins recognizing carbohydrate ligands, small molecules, peptides and nucleic acid aptamers and we portray work performed with viruses, cell models, and whole organisms.


Assuntos
Ácidos Nucleicos/química , Proteínas/química , Sítios de Ligação , Ligantes
2.
ACS Chem Biol ; 15(10): 2714-2721, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32902259

RESUMO

Messenger RNA (mRNA) isolated from single cells can generate powerful biological insights, including the discovery of new cell types with unique functions as well as markers potentially predicting a cell's response to various therapeutic agents. We previously introduced an oligonucleotide-based technique for site-selective, photoinduced biotinylation and capture of mRNA within a living cell called transcriptome in vivo analysis (TIVA). Successful application of the TIVA technique hinges upon its oligonucleotide probe remaining completely inert (or "caged") to mRNA unless photoactivated. To improve the reliability of TIVA probe caging in diverse and challenging biological conditions, we applied a rational design process involving iterative modifications to the oligonucleotide construct. In this work, we discuss these design motivations and present an optimized probe with minimal background binding to mRNA prior to photolysis. We assess its caging performance through multiple in vitro assays including FRET analysis, native gel comigration, and pull down with model mRNA transcripts. Finally, we demonstrate that this improved probe can also isolate mRNA from single living neurons in brain tissue slices with excellent caging control.


Assuntos
Neurônios/metabolismo , Sondas RNA/química , RNA Mensageiro/análise , Transcriptoma , Animais , Biotina/análogos & derivados , Encéfalo/citologia , Carbocianinas/química , Corantes Fluorescentes/química , Perfilação da Expressão Gênica/métodos , Luz , Camundongos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Nitrobenzenos/química , Nitrobenzenos/efeitos da radiação , Sondas RNA/genética , Sondas RNA/efeitos da radiação , RNA Mensageiro/genética , Análise de Célula Única/métodos
3.
Anal Bioanal Chem ; 411(8): 1549-1559, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30675629

RESUMO

We report the development of a fast and accurate fluorescence-based assay for amidine linked to cellulose membranes and Sepharose gel. The assay is founded on the glyoxal reaction, which involves reaction of an amidine group with glyoxal and an aromatic aldehyde, leading to the formation of a fluorophore that can be analyzed and quantified by fluorescence spectroscopy and imaging. While the assay has been reported previously for aromatic amidine estimation in solution phase, here we describe its adaptation and application to amidine linked to diverse forms of solid matrices, particularly benzamidine Sepharose and benzamidine-linked cellulose membranes. These functionalized porous matrices find important application in purification of serine proteases. The efficacy of a protein separation device is determined by, among other factors, the ligand (amidine) density. Hence, a sensitive and reproducible method for amidine quantitation in solid phase is needed. The glyoxal reaction was carried out on microbead-sized Sepharose gel and cellulose membranes. Calibration curves were developed for each phase, which established linearity in the range of 0-0.45 µmol per mL amidine for free amidine in solution, 0-0.45 µmol amidine per mL Sepharose gel, and 0-0.48 µmol per mL cellulose membrane. The assay showed high accuracy (~ 3.4% error), precision (RSD < 2%), and reproducibility. Finally, we show how this fluorescent labeling (glyoxal) method can provide a tool for imaging membranes and ligand distribution through confocal laser scanning microscopy. Graphical abstract.

4.
Chembiochem ; 19(12): 1250-1254, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29479781

RESUMO

Light-activated ("caged") antisense oligonucleotides are powerful molecules for regulating gene expression at submicron spatial resolution through the focal modulation of endogenous cellular processes. Cyclized caged oligos are particularly promising structures because of their inherent stability and similarity to naturally occurring circular DNA and RNA molecules. Here, we introduce an efficient route for cyclizing an antisense oligodeoxynucleotide incorporating a photocleavable linker. Oligo cyclization was achieved for several sequences in nearly quantitative yields through intramolecular copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Caging stability and light activation were characterized by FRET efficiency, denaturing gel assay, and melting temperature measurements. Finally, a cyclized caged oligo was designed to target gfap, and it gave a tenfold reduction in glial fibrillary acidic protein upon photoactivation in astrocytes.


Assuntos
Química Click/métodos , Oligonucleotídeos Antissenso/síntese química , Optogenética/métodos , Alcinos/síntese química , Alcinos/química , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Azidas/síntese química , Azidas/química , Sequência de Bases , Carbocianinas/síntese química , Carbocianinas/química , Catálise , Cobre/química , Ciclização , Reação de Cicloadição/métodos , Expressão Gênica/efeitos da radiação , Proteína Glial Fibrilar Ácida/genética , Humanos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética
5.
J Inorg Biochem ; 150: 182-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25865001

RESUMO

Light-activated ("caged") compounds have been widely employed for studying biological processes with high spatial and temporal control. In the past decade, several new approaches for caging the structure and function of DNA and RNA oligonucleotides have been developed. This review focuses on caged oligonucleotides that incorporate site-specifically one or two photocleavable linkers, whose photolysis yields oligonucleotides with dramatic structural and functional changes. This technique has been employed by our laboratory and others to photoregulate gene expression in cells and living organisms, typically using near UV-activated organic chromophores. To improve capabilities for in vivo studies, we harnessed the rich inorganic photochemistry of ruthenium bipyridyl complexes to synthesize Ru-caged morpholino antisense oligonucleotides that remain inactive in zebrafish embryos until uncaged with visible light. Expanding into new caged oligonucleotide applications, our lab has developed Transcriptome In Vivo Analysis (TIVA) technology, which provides the first noninvasive, unbiased method for isolating mRNA from single neurons in brain tissues. TIVA-isolated mRNA can be amplified and then analyzed using next-generation sequencing (RNA-seq).


Assuntos
Complexos de Coordenação/química , Oligonucleotídeos Antissenso/genética , Rutênio/química , Animais , Encéfalo/metabolismo , Complexos de Coordenação/efeitos da radiação , Embrião não Mamífero , Perfilação da Expressão Gênica , Humanos , Luz , MicroRNAs/genética , MicroRNAs/efeitos da radiação , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Oligonucleotídeos Antissenso/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra
6.
Nat Methods ; 11(2): 190-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24412976

RESUMO

Transcriptome profiling of single cells resident in their natural microenvironment depends upon RNA capture methods that are both noninvasive and spatially precise. We engineered a transcriptome in vivo analysis (TIVA) tag, which upon photoactivation enables mRNA capture from single cells in live tissue. Using the TIVA tag in combination with RNA sequencing (RNA-seq), we analyzed transcriptome variance among single neurons in culture and in mouse and human tissue in vivo. Our data showed that the tissue microenvironment shapes the transcriptomic landscape of individual cells. The TIVA methodology is, to our knowledge, the first noninvasive approach for capturing mRNA from live single cells in their natural microenvironment.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hipocampo/metabolismo , Neurônios/metabolismo , Análise de Sequência de RNA/métodos , Animais , Biologia Computacional , Biblioteca Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...