Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Digit Health ; 5: 1064936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778102

RESUMO

Disease phenotypes are characterized by signs (what a physician observes during the examination of a patient) and symptoms (the complaints of a patient to a physician). Large repositories of disease phenotypes are accessible through the Online Mendelian Inheritance of Man, Human Phenotype Ontology, and Orphadata initiatives. Many of the diseases in these datasets are neurologic. For each repository, the phenotype of neurologic disease is represented as a list of concepts of variable length where the concepts are selected from a restricted ontology. Visualizations of these concept lists are not provided. We address this limitation by using subsumption to reduce the number of descriptive features from 2,946 classes into thirty superclasses. Phenotype feature lists of variable lengths were converted into fixed-length vectors. Phenotype vectors were aggregated into matrices and visualized as heat maps that allowed side-by-side disease comparisons. Individual diseases (representing a row in the matrix) were visualized as word clouds. We illustrate the utility of this approach by visualizing the neuro-phenotypes of 32 dystonic diseases from Orphadata. Subsumption can collapse phenotype features into superclasses, phenotype lists can be vectorized, and phenotypes vectors can be visualized as heat maps and word clouds.

2.
Neural Netw ; 160: 34-49, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36621169

RESUMO

Biclustering is a powerful tool for exploratory data analysis in domains such as social networking, data reduction, and differential gene expression studies. Topological learning identifies connected regions that are difficult to find using other traditional clustering methods and produces a graphical representation. Therefore, to improve the quality of biclustering and module extraction, this work combines the adaptive resonance theory (ART)-based methods of biclustering ARTMAP (BARTMAP) and topological ART (TopoART), to produce TopoBARTMAP. The latter inherits the ability to detect topological associations while performing data reduction. The capabilities of TopoBARTMAP were benchmarked using 35 real world cancer datasets and contrasted with other (bi)clustering methods, where it showed a statistically significant improvement over the other assessed methods on ordered and shuffled data experiments. In experiments with 12 synthetic datasets, the method was observed to perform better at identifying constant, scale, shift, and shift scale type biclusters. The produced graphical representation was refined to represent gene bicluster associations and was assessed on the NCBI GSE89116 dataset containing expression levels of 39,326 probes sampled over 38 observations.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...