Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 4(3): 100735, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38503290

RESUMO

Label-free imaging methodologies for nerve fibers rely on spatial signal continuity to identify fibers and fail to image free intraepidermal nerve endings (FINEs). Here, we present an imaging methodology-called discontinuity third harmonic generation (THG) microscopy (dTHGM)-that detects three-dimensional discontinuities in THG signals as the contrast. We describe the mechanism and design of dTHGM and apply it to reveal the bead-string characteristics of unmyelinated FINEs. We confirmed the label-free capability of dTHGM through a comparison study with the PGP9.5 immunohistochemical staining slides and a longitudinal spared nerve injury study. An intraepidermal nerve fiber (IENF) index based on a discontinuous-dot-connecting algorithm was developed to facilitate clinical applications of dTHGM. A preliminary clinical study confirmed that the IENF index was highly correlated with skin-biopsy-based IENF density (Pearson's correlation coefficient R = 0.98) and could achieve differential identification of small-fiber neuropathy (p = 0.0102) in patients with diabetic peripheral neuropathy.


Assuntos
Neuropatias Diabéticas , Microscopia de Geração do Segundo Harmônico , Neuropatia de Pequenas Fibras , Humanos , Fibras Nervosas , Pele/inervação
2.
iScience ; 26(1): 105865, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36632059

RESUMO

Although empathic emotion is closely related to prosocial behavior, neuronal substrate that accounts for empathy-associated prosocial action remains poorly understood. We recorded neurons in the anterior cingulate cortex (ACC) and insular cortex (InC) in rats when they observed another rat in pain. We discovered neurons with anti-mirror properties in the ACC and InC, in addition to those with mirror properties. ACC neurons show higher coupling between activation of self-in-pain and others-in-pain, whereas the InC has a higher ratio of neurons with anti-mirror properties. During others-in-pain, ACC neurons activated more when actively nose-poking toward others and InC neurons activated more when freezing. To further illustrate prosocial function, we examined neuronal activities in the helping behavior test. Both ACC and InC neurons showed specific activation to rat rescuing which is contributed by mirror, but not anti-mirror neurons. Our work indicates the functional involvement of mirror neuron system in prosocial behaviors.

3.
iScience ; 24(9): 103041, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34585109

RESUMO

The Nyquist-Shannon criterion has never been realized in a laser-scanning mesoscopic multiphoton microscope (MPM) with a large field-of-view (FOV)-resolution ratio, especially when employing a high-frequency resonant-raster-scanning. With a high optical resolution nature, a current mesoscopic-MPM either neglects the criterion and degrades the digital resolution to twice the pixel size, or reduces the FOV and/or the raster-scanning speed to avoid aliasing. We introduce a Nyquist figure-of-merit (NFOM) parameter to characterize a laser-scanning MPM in terms of its optical-resolution retrieving ability. Based on NFOM, we define the maximum aliasing-free FOV, and subsequently, a cross-over excitation wavelength, below which the FOV becomes NFOM-constrained irrespective of an optimized optical design. We validate our idea in a custom-built mesoscopic-MPM with millimeter-scale FOV yielding an ultra-high FOV-resolution ratio of >3,000, while securing up-to a 1.6 mm Nyquist-satisfied aliasing-free FOV, a ∼400 nm lateral resolution, and a 70 M/s effective voxel-sampling rate, all at the same time.

4.
IEEE Trans Biomed Circuits Syst ; 15(4): 719-730, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34260358

RESUMO

This work proposed a programmable pulsed radio-frequency (PRF) stimulator for trigeminal neuralgia (TN) relief on demand. The implantable stimulator is a miniaturized micro-system which integrates a wireless interface circuit, a sensor interface circuit, a PRF pattern generation circuit and a logic controller. The multifunctional stimulator capable of delivering current/voltage stimulation provides the choice of the biphasic sinusoidal, square and patterned waveform for PRF treatment researches. The external handheld device can wirelessly transmit the parameters of frequency, amplitude, pulse duration and repetition rate of the pulse train to the implanted stimulator. While stimulating, the temperature sensor can monitor the operating temperature. The feedback signal is transmitted in medical implanted communication system (MICS). The micro-system is fabricated in a 0.35 µm CMOS process with a chip size of 3.1 × 2.7 mm2. The fabricated chip was mounted on a 2.6 × 2.1 cm2 test board for studying the in vivo efficacy of pain relief by PRF. Animal studies of PRF stimulation and commonly-used medication for trigeminal neuralgia are also demonstrated and the presented results prove that PRF stimulation has greater effectiveness on trigeminal neuralgia relief comparing to the medication. The effectiveness period lasts at least 14 days. The results of neural recording show that the PRF stimulation of trigeminal ganglion (TG) attenuated neuron activities without being severely damaged. Pathology also revealed no lesion found on the stimulated area.


Assuntos
Tratamento por Radiofrequência Pulsada , Neuralgia do Trigêmeo , Animais , Modelos Animais de Doenças , Manejo da Dor , Gânglio Trigeminal , Neuralgia do Trigêmeo/terapia
5.
J Comp Neurol ; 529(12): 3247-3264, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33880774

RESUMO

Neuropathic pain is pain caused by damage to the somatosensory nervous system. Both degenerating injured nerves and neighboring sprouting nerves can contribute to neuropathic pain. However, the mesoscale changes in cutaneous nerve fibers over time after the loss of the parent nerve has not been investigated in detail. In this study, we followed the changes in nerve fibers longitudinally in the toe tips of mice that had undergone spared nerve injury (SNI). Nav1.8-tdTomato, Thy1-GFP and MrgD-GFP mice were used to observe the small and large cutaneous nerve fibers. We found that peripheral nerve plexuses degenerated within 3 days of nerve injury, and free nerve endings in the epidermis degenerated within 2 days. The timing of degeneration paralleled the initiation of mechanical hypersensitivity. We also found that some of the Nav1.8-positive nerve plexuses and free nerve endings in the fifth toe survived, and sprouting occurred mostly from 7 to 28 days. The timing of the sprouting of nerve fibers in the fifth toe paralleled the maintenance phase of mechanical hypersensitivity. Our results support the hypotheses that both injured and intact nerve fibers participate in neuropathic pain, and that, specifically, nerve degeneration is related to the initiation of evoked pain and nerve sprouting is related to the maintenance of evoked pain.


Assuntos
Microscopia Intravital/métodos , Degeneração Neural/patologia , Neuralgia/patologia , Neurônios Aferentes/patologia , Dedos do Pé/inervação , Dedos do Pé/patologia , Animais , Feminino , Microscopia Intravital/tendências , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Aferentes/química
6.
Cells ; 9(11)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158176

RESUMO

Multiple peripheral nerves are known to degenerate after nerve compression injury but the correlation between the extent of nerve alteration and pain severity remains unclear. Here, we used intravital two-photon fluorescence microscopy to longitudinally observe changes in cutaneous fibers in the hind paw of Nav1.8-Cre-tdTomato mice after chronic constriction injury (CCI). Results showed that the CCI led to variable loss of the skin nerve plexus and intraepidermal nerve fibers. The timing of Nav1.8 nerve fiber loss correlated with the development of mechanical hypersensitivity. We compared a scoring approach that assessed whole-paw nerve degeneration with an index that quantified changes in the nerve plexus and terminals in multiple small regions of interest (ROI) from intravital images of the third and fifth toe tips. We found that the number of surviving nerve fibers was not linearly correlated with mechanical hypersensitivity. On the contrary, at 14 days after CCI, the moderately injured mice showed greater mechanical hypersensitivity than the mildly or severely injured mice. This indicates that both surviving and injured nerves are required for evoked neuropathic pain. In addition, these two methods may have the estimative effect as diagnostic and prognostic biomarkers for the assessment of neuropathic pain.


Assuntos
Hiperalgesia/patologia , Fibras Nervosas/patologia , Neuralgia/patologia , Animais , Comportamento Animal , Doença Crônica , Constrição Patológica , Epiderme/inervação , Feminino , Hiperalgesia/complicações , Microscopia Intravital , Masculino , Camundongos Endogâmicos C57BL , Degeneração Neural/complicações , Degeneração Neural/patologia , Neuralgia/complicações , Limiar da Dor
7.
ACS Biomater Sci Eng ; 6(1): 597-609, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463202

RESUMO

Graphene, with excellent conductivity can promote the growth and differentiation of neural stem cells (NSCs), but the rigidity has limited its direct application in neural tissue engineering. In this study, waterborne biodegradable polyurethane (PU) was used as the matrix for the graphene nanocomposite materials to make graphene applicable to biocompatible scaffolds. The graphene sheets were observed on the surface of the composites which contained 5 wt % graphene (PU-G5). The nanocomposite retained the positive effect of graphene on cell behavior, while PU was flexible enough for further fabrication. Endothelial cells (ECs) and NSCs cocultured on the nanocomposite became more vascular-like and glial-like without induction culture medium. The specific vascular-related and neural-related gene markers, KDR, VE-Cadherin, and GFAP, were upregulated more than twice as the content of graphene increased (5 wt %). The fibrous capsule of the PU-G5 film group was about 38 µm in thickness in subcutaneous implantation, which was only half that of the graphene-free group. Nerve conduits made of the PU-graphene nanocomposite were found to promote the regeneration of the peripheral nerve in a rat sciatic nerve 10 mm gap transection model. In particular, the regenerated tissue in PU-G5 conduits showed an obvious response peak in the compound action potential (CAP) examination and had a similar CAP wave pattern to that of the normal sciatic nerve. However, such a response was not observed in the PU group. The nerve conduit made of PU-G5 had 72% and 50% enhancement on the numbers of axons and blood vessels of regenerated tissue, respectively. The regenerated area of nerve in PU-G5 was 25% larger than that in pristine PU. Compared with the U.S. Food and Drug Administration (FDA) approved conduit, Neurotube, the regenerated nerve in PU-G5 was 1.7 times more than that in Neurotube. In addition to the fast recovery rate, the ability to regenerate tissue with normal morphology is a significant finding of this study that may lead to clinical applications in the future. PU-graphene nanocomposites thus have potential applications in neural tissue engineering.


Assuntos
Grafite , Nanocompostos , Animais , Células Endoteliais , Poliuretanos , Ratos , Alicerces Teciduais , Estados Unidos
8.
Aging Cell ; 19(1): e13075, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755176

RESUMO

Aging, cancer, and longevity have been linked to intracellular Ca2+ signaling and nociceptive transient receptor potential (TRP) channels. We found that TRP canonical 7 (TRPC7) is a nociceptive mechanoreceptor and that TRPC7 channels specifically mediate the initiation of ultraviolet B (UVB)-induced skin aging and tumor development due to p53 gene family mutations. Within 30 min after UVB irradiation, TRPC7 mediated UVB-induced Ca2+ influx and the subsequent production of reactive oxygen species in skin cells. Notably, this function was unique to TRPC7 and was not observed for other TRP channels. In TRPC7 knockout mice, we did not observe the significant UVB-associated pathology seen in wild-type mice, including epidermal thickening, abnormal keratinocyte differentiation, and DNA damage response activation. TRPC7 knockout mice also had significantly fewer UVB-induced cancerous tumors than did wild-type mice, and UVB-induced p53 gene family mutations were prevented in TRPC7 knockout mice. These results indicate that TRPC7 activity is pivotal in the initiation of UVB-induced skin aging and tumorigenesis and that the reduction in TRPC7 activity suppresses the UVB-induced aging process and tumor development. Our findings support that TRPC7 is a potential tumor initiator gene and that it causes cell aging and genomic instability, followed by a change in the activity of proto-oncogenes and tumor suppressor genes to promote tumorigenesis.


Assuntos
Envelhecimento da Pele/genética , Envelhecimento da Pele/efeitos da radiação , Canais de Cátion TRPC/genética , Animais , Carcinogênese/genética , Carcinogênese/efeitos da radiação , Humanos , Queratinócitos , Camundongos , Camundongos Knockout , Raios Ultravioleta
10.
J Chin Med Assoc ; 82(6): 457-463, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31180945

RESUMO

BACKGROUND: Although current neuropathic pain treatment guidelines do not recommend the use of nonsteroidal anti-inflammatory drugs (NSAIDs), whether NSAIDs can serve as a useful adjuvant to conventional multimodal therapy remains unclear. METHODS: The spared nerve injury (SNI) rats rapidly developed profound and long-lasting spontaneous and evoked pain behaviors, including mechanical and cold allodynia of the ipsilateral hind paw. At day 5, we first characterized the nociceptive responses to ketorolac, tramadol, pregabalin, and their combinations. RESULTS: We found that tramadol and pregabalin exerted dose-dependent analgesic effects on both spontaneous and evoked behaviors. However, ketorolac alone did not suppress any behaviors regardless of the dose. Ketorolac-tramadol and ketorolac-pregabalin produced variable degrees of additive suppression of spontaneous and evoked behavioral responses. Cold allodynia was profoundly diminished after ketorolac was added to ineffective pregabalin or tramadol. Mechanical allodynia was markedly attenuated by ketorolac-pregabalin but less so by ketorolac-tramadol mixtures. CONCLUSION: Our data demonstrated that an NSAID alone failed to relieve spontaneous or evoked pain behaviors in the rat SNI model, but when combined with a weak opioid and α-2-δ-ligand produced a profound synergistic analgesic effect on cold allodynia and discrepant efficacy for mechanical allodynia and spontaneous pain.


Assuntos
Cetorolaco/administração & dosagem , Neuralgia/tratamento farmacológico , Pregabalina/administração & dosagem , Tramadol/administração & dosagem , Animais , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Cetorolaco/uso terapêutico , Masculino , Meloxicam/administração & dosagem , Pregabalina/uso terapêutico , Ratos , Ratos Sprague-Dawley , Tramadol/uso terapêutico
11.
Mol Pain ; 15: 1744806919841194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30868934

RESUMO

Morphine is the most commonly used drug for treating physical and psychological suffering caused by advanced cancer. Although morphine is known to elicit multiple supraspinal analgesic effects, its behavioral correlates with respect to the whole-brain metabolic activity during cancer-induced bone pain have not been elucidated. We injected 4T1 mouse breast cancer cells into the left femur bone marrow cavity of BALB/c mice. All mice developed limb use deficits, mechanical allodynia, and hypersensitivity to cold, which were effectively suppressed with morphine. Serial 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) was performed for each mouse before cancer induction (0 day), after cancer-induced bone pain was established (14 days), and during effective morphine treatment (16 days). The longitudinal FDG-PET imaging analysis demonstrated that cancer-induced bone pain increased glucose uptake in the insular cortex and hypothalamus and decreased the activity of the retrosplenial cortex. Morphine reversed the activation of the insular cortex and hypothalamus. Furthermore, morphine activated the amygdala and rostral ventromedial medulla and suppressed the activity of anterior cingulate cortex. Our findings of hypothalamic and insular cortical activation support the hypothesis that cancer-induced bone pain has strong inflammatory and affective components in freely moving animals. Morphine may provide descending inhibitory and facilitatory actions in the treatment of cancer-induced bone pain in a clinical setting.


Assuntos
Encéfalo/diagnóstico por imagem , Dor do Câncer/diagnóstico por imagem , Morfina/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Animais , Neoplasias Ósseas/diagnóstico por imagem , Linhagem Celular Tumoral , Feminino , Fluordesoxiglucose F18/análise , Hiperalgesia/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos BALB C
12.
Kaohsiung J Med Sci ; 35(4): 230-237, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30887714

RESUMO

Pain in athletes is ideally treated without systemic medicine. Therefore, complementary and alternative medicine, including patch treatments, is often used. The physiologic mechanisms of pain relief produced by patch treatment, however, are not well elucidated. In the present study, we introduce a pyramidal thorn (PT) patch that we developed, demonstrate the effects of this PT patch for the treatment of various types of pain in 300 subjects, and suggest a physiologic mechanism for the pain relief effects. One treatment with the PT patch effectively relieved pain in almost half the subjects evaluated. Except for pain generated deeply under the skin, such as low-back pain, pain was eliminated within four treatments with the PT patch in almost all of the subjects. Interestingly, the pain-sensing region moved along the nerve fibers after each trial. Further, patches without PT also provided some pain relief. We considered that this effect was due to hair deflection on the skin; that is, adhesion of the PT patch activates Merkel cells directly as well as Merkel cell-neurite complexes around the hair follicles by deflecting the hair follicles, whereas adhesion of a patch without PT only activates the Merkel cell-neurite complexes. In any case, patch adhesion stimulates Aß fibers to alleviate pain. Finally, we found that the pain threshold is increased by electric stimulation, suggesting that the gentle adhesion of a PT patch would be more effective. To our knowledge, this is the first study to demonstrate physiologically the validity of an adherent patch for pain relief.


Assuntos
Adesivos/uso terapêutico , Atletas , Dor/tratamento farmacológico , Adulto , Analgesia , Estimulação Elétrica , Feminino , Humanos , Masculino , Dor/fisiopatologia , Limiar da Dor , Esportes
13.
J Physiol Sci ; 69(2): 387-397, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30604289

RESUMO

Mediodorsal thalamic nucleus (MD) is a critical relay of nociception. This study recorded responses of MD neurons to noxious mechanical and thermal stimuli in isoflurane anesthetized rats. We found the threshold of noxious mechanical stimulation was 141 gw and that of noxious heat stimulation was 46 °C. A significantly higher percentage of noxious inhibitory neurons were found in the medial and central part of the MD, whereas a higher percentage of noxious excitatory neurons were found in the lateral part of the MD and adjacent intralaminar nuclei. The differential distribution of excitatory and inhibitory neurons implies functional differentiation between the medial and lateral part of the MD in nociception processing. Furthermore, by an analysis of the stimulus-response function (SRF), we found 80% of these excitatory neurons had a step-function or hat-shape-like SRF. This suggests that most of the MD neurons may serve as a system to distinguish innocuous versus noxious stimuli.


Assuntos
Núcleo Mediodorsal do Tálamo/fisiologia , Neurônios/fisiologia , Nociceptividade/fisiologia , Nociceptores/fisiologia , Animais , Masculino , Ratos , Ratos Wistar
14.
J Biophotonics ; 12(1): e201800136, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30112801

RESUMO

Optical imaging is a key modality for observing biological specimen with higher spatial resolution. However, scattering and absorption of light in tissues are inherent barriers in maximizing imaging depth in biological tissues. To achieve this goal, use of light at near-infrared spectrum can improve the present situation. Here, the capability of saturated two-photon saturated excitation (TP-SAX) fluorescence microscopy to image at depths of >2.0 mm, with submicron resolution in transparent mouse brain imaging, is demonstrated. At such depths with scattering-enlarged point spread function (PSF), we find that TP-SAX is capable to provide spatial resolution improvement compared to its corresponding TPFM, which is on the other hand already providing a much improved resolution compared with single-photon confocal fluorescence microscopy. With the capability to further improve spatial resolution at such deep depth with scattering-enlarged PSF, TP-SAX can be used for exquisite visualization of delicate cerebral neural structure in the scattering regime with a submicron spatial resolution inside intact mouse brain.


Assuntos
Encéfalo/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Rede Nervosa/diagnóstico por imagem , Animais , Encéfalo/metabolismo , Carbocianinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/metabolismo , Fenômenos Ópticos
15.
Mol Brain ; 11(1): 55, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285801

RESUMO

Neuropathic pain is a major worldwide health problem. Although central sensitization has been reported in well-established neuropathic conditions, information on the acute brain activation patterns in response to peripheral nerve injury is lacking. This study first mapped the brain activity in rats immediately following spared nerve injury (SNI) of the sciatic nerve. Using blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD-fMRI), we observed sustained activation in the bilateral insular cortices (ICs), primary somatosensory cortex (S1), and cingulate cortex. Second, this study sought to link this sustained activation pattern with brain sensitization. Using manganese-enhanced magnetic resonance imaging (MEMRI), we observed enhanced activity in the ipsilateral anterior IC (AIC) in free-moving SNI rats on Days 1 and 8 post-SNI. Furthermore, enhanced functional connectivity between the ipsilateral AIC, bilateral rostral AIC, and S1 was observed on Day 8 post-SNI. Chronic electrophysiological recording experiments were conducted to confirm the tonic neuronal activation in selected brain regions. Our data provide evidence of tonic activation-dependent brain sensitization during neuropathic pain development and offer evidence that the plasticity changes in the IC and S1 may contribute to neuropathic pain development.


Assuntos
Rede Nervosa/fisiopatologia , Neuralgia/fisiopatologia , Plasticidade Neuronal/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Prosencéfalo/fisiopatologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Animais , Comportamento Animal , Eletrodos Implantados , Feminino , Hiperalgesia/complicações , Hiperalgesia/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Manganês/química , Neuralgia/complicações , Oxigênio/sangue , Traumatismos dos Nervos Periféricos/complicações , Ratos Sprague-Dawley
16.
Chin J Physiol ; 61(4): 240-251, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30139246

RESUMO

Neuropathic pain is due to lesion or dysfunction of the somatosensory system. Treating patients with neuropathic pain is difficult because the underlying mechanisms are understood limitedly, especially at the supraspinal level. In this study, we used two kinds of molecular markers to investigate the neuronal activity changes in the anterior cingulate cortex, insular cortex (IC), and medial prefrontal cortex (mPFC) of the neuropathic rats under tactile allodynia. We used spared nerve injury of the sciatic nerve (SNI) as the neuropathic pain model. Two weeks after SNI surgery, we applied repetitive allodynic stimulation to the conscious rats. After stimulation, the rats were sacrificed, and the immunohistochemistry of phosphorylated extracellular signal-regulated kinase (pERK) and c-Fos was performed. Quantification of immunoreactive cells was carried out by stereological method. For pERK study, the expression of pERK was significantly increased in the mPFC and IC of the SNI rats. For c-Fos study, only mPFC had elevated expression of c-Fos in the SNI rats. The analgesic, gabapentin, reversed the mechanical hyper-sensitivity and the augmented expression of limbic pERK and c-Fos in the SNI rats. Immunofluorescent staining revealed the expression of pERK or c-Fos was restricted to neurons, not glia cells. Our results demonstrated that tactile allodynia represented differential expression of pERK and c-Fos in the limbic cortices of the neuropathic rats.


Assuntos
Hiperalgesia , Neuralgia , Animais , Modelos Animais de Doenças , Córtex Pré-Frontal , Proteínas Proto-Oncogênicas c-fos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático
17.
Pain Physician ; 20(2): E269-E283, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28158164

RESUMO

BACKGROUND: Pulsed radiofrequency (PRF) has been widely employed for ameliorating clinical neuropathic pain. How PRF alters electrophysiological transmission and modulates biomolecular functions in neural tissues has yet to be clarified. We previously demonstrated that an early application of low-voltage bipolar PRF adjacent to the dorsal root ganglion (DRG) reduced acute neuropathic pain in animals. By contrast, the present study investigated how PRF alters postsynaptic sensitization to produce early and delayed effects on neuropathic pain. OBJECTIVES: Our objective was to test the hypothesis that a 5-minute session of PRF could rapidly produce selective long-term depression (LTD) on C-fiber-mediated spinal sensitization and sustain the effect through the long-lasting inhibition of injury-induced ERK-MAPK activation. This may explain the prolonged analgesic effect of PRF on chronic neuropathic pain. STUDY DESIGN: Experiments were conducted on both normal rats and neuropathic pain rats that received spinal nerve ligation (SNL) 8 days prior. SETTING: An animal laboratory in a medical center of a university in Taiwan. METHODS: We first compared changes in field potentials in the L5 superficial spinal dorsal horn (SDH) that were evoked by conditioning electrical stimuli in the sciatic nerve in male adult rats before (as the baseline) and after PRF stimulation for at least 2 hours. Bipolar PRF was applied adjacent to the L5 DRG at an intensity of 5 V for 5 minutes, whereas the control rats were treated with sham applications. The electrophysiological findings were tested for any correlation with induction of spinal phospho-ERK (p-ERK) in normal and neuropathic pain rats. We then investigated the delayed effect of PRF on SNL-maintained pain behaviors for 2 weeks as well as p-ERK in SDH among the control, SNL, and PRF groups. Finally, potential injury in the DRGs after PRF stimulation was evaluated through behavioral observations and ATF-3, a neuronal stress marker. RESULTS: In the evoked field-potential study, the recordings mediated through A- and C-afferent fibers were identified as A-component and C-component, respectively. PRF significantly reduced the C-components over 2 hours in both the normal and SNL rats, but it did not affect the A-components. In the SNL rats, the C-component was significantly depressed in the PRF group compared with the sham group. PRF also inhibited acute p-ERK induced by mechanical nociception in both the control and SNL rats. For a longer period, PRF ameliorated SNL-maintained mechanical allodynia for 10 days and thermal analgesia for 14 days, and it significantly reduced late ERK activation within spinal neurons and astrocytes 14 days afterward. Moreover, PRF in the normal rats did not alter basal withdrawal thresholds or increase the expression and distribution of ATF-3 in the DRGs. LIMITATIONS: Several issues should be considered before translating the animal results to clinical applications. CONCLUSIONS: Low-voltage bipolar PRF produces LTD through selective suppression on the C-component, but not on the A-component. It also inhibits ERK activation within neurons and astrocytes in SDHs. The findings suggest that PRF alleviates long-lasting neuropathic pain by selectively and persistently modulating C-fiber-mediated spinal nociceptive hypersensitivity.Key words: Pulsed radiofrequency (PRF), dorsal root ganglion (DRG), neuropathic pain, ERK activation, evoked field potential, ATF-3, long-term depression (LTD), spinal nerve ligation (SNL).


Assuntos
Depressão/fisiopatologia , Neuralgia/terapia , Animais , Modelos Animais de Doenças , Hiperalgesia , Masculino , Neuralgia/fisiopatologia , Manejo da Dor , Tratamento por Radiofrequência Pulsada , Ratos , Ratos Sprague-Dawley , Nervos Espinhais
18.
J Biomed Mater Res A ; 105(5): 1383-1392, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28152586

RESUMO

Peripheral nerve conduits were fabricated from biodegradable polyurethane (PU) which was synthesized by a waterborne process. The biodegradable PU was based on poly(ε-caprolactone) diol and polyethylene butylene adipate diol (2:3 molar ratio) as the soft segment. Conduits formed by the freeze-drying process had asymmetric microporous structure. The PU nerve conduits were used to bridge a 10-mm gap in rat sciatic nerve. Nerve regeneration was evaluated by walking track analysis, magnetic resonance imaging (MRI), electrophysiological, and histological analyses. Results demonstrated that after 6 weeks, walking function was recovered by 40%. MR images showed that the transected nerve was reconnected after 3 weeks and the diameter of the regenerated nerve increased from 3 to 6 weeks. The nerve conduction velocity of the regenerated nerve reached 50% of the normal value after 6 weeks. Histological examination revealed that the cross-sectional area of the regenerated nerve at the midconduit was 0.24 mm2 after 6 weeks. The efficacy of PU nerve conduits based on functional recovery and histology was superior to that of commercial conduits (Neurotube). The PU nerve conduit developed in this study may be a potential candidate for clinical peripheral nerve tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1383-1392, 2017.


Assuntos
Implantes Absorvíveis , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/terapia , Poliésteres , Poliuretanos , Animais , Poliésteres/química , Poliésteres/farmacologia , Poliuretanos/química , Poliuretanos/farmacologia , Ratos
19.
Sci Rep ; 6: 26050, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27198662

RESUMO

Gliomas are aggressive brain tumors with poor prognosis. In this study, we report a novel approach combining both in vivo multi-parametric MRI and in vitro cell culture assessments to evaluate the pathogenic development of gliomas. Osteopontin (OPN), a pleiotropic factor, has been implicated in the formation and progression of various human cancers, including gliomas, through its functions in regulating cell proliferation, survival, angiogenesis, and migration. Using rat C6 glioma model, the combined approach successfully monitors the acquisition and decrease of cancer hallmarks. We show that knockdown of the expression of OPN reduces C6 cell proliferation, survival, viability and clonogenicity in vitro, and reduces tumor burden and prolongs animal survival in syngeneic rats. OPN depletion is associated with reduced tumor growth, decreased angiogenesis, and an increase of tumor-associated metabolites, as revealed by T2-weighted images, diffusion-weighted images, K(trans) maps, and 1H-MRS, respectively. These strategies allow us to define an important role of OPN in conferring cancer hallmarks, which can be further applied to assess the functional roles of other candidate genes in glioma. In particular, the non-invasive multi-parametric MRI measurement of cancer hallmarks related to proliferation, angiogenesis and altered metabolism may serve as a useful tool for diagnosis and for patient management.


Assuntos
Neoplasias Encefálicas/diagnóstico , Glioma/diagnóstico , Osteopontina/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Autorrenovação Celular , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Transplante de Neoplasias , Neovascularização Patológica , Osteopontina/genética , Ratos , Carga Tumoral
20.
Physiol Behav ; 154: 129-34, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26621057

RESUMO

The rostral agranular insular cortex (RAIC), an opioid-responsive site, is essential for modulating nociception in rats. Our previous studies have shown that morphine suppressed long latency laser heat-evoked nociceptive responses in the primary somatosensory cortex (SmI). By contrast, morphine significantly attenuated both short and long latency responses in the anterior cingulate cortex (ACC). The present study assessed the effect of morphine on laser heat-evoked responses in the RAIC. Laser heat irradiation applied to the rat forepaws at graded levels was used as a specific noxious stimulus. In the RAIC, the first part of the long latency component (140-250ms) of the laser heat-evoked response was enhanced by intraperitoneal morphine (5mg/kg). When the laser heat-evoked cortical responses were examined for trials showing strong nocifensive movement (paw licking), moderate nocifensive movement (paw lifting), and no nocifensive movement, a 140-250ms period enhancement was observed in the RAIC only for the paw lifting movement. This enhancement was absent in the SmI. Thus, our data suggest that the RAIC has a pain-related behavior-dependent neuronal component. Furthermore, the RAIC, ACC, and SmI are differentially modulated by morphine analgesia.


Assuntos
Analgésicos Opioides/farmacologia , Córtex Cerebral/efeitos dos fármacos , Lasers/efeitos adversos , Morfina/farmacologia , Dor Nociceptiva/tratamento farmacológico , Tempo de Reação/efeitos dos fármacos , Animais , Relação Dose-Resposta à Radiação , Eletroencefalografia , Eletromiografia , Feminino , Temperatura Alta , Dor Nociceptiva/etiologia , Medição da Dor , Análise de Componente Principal , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...