Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456005

RESUMO

This study focuses on preparation and valuation of the biodegradable, native, and modified gelatin film as screen-printing substrates. Modified gelatin film was prepared by crosslinking with various crosslinking agents and the electrode array was designed by screen-printing. It was observed that the swelling ratio of C-2, crosslinked with glutaraldehyde and EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide) was found to be lower (3.98%) than that of C-1 (crosslinked with only glutaraldehyde) (8.77%) and C-0 (without crosslinking) (28.15%). The obtained results indicate that the swelling ratios of both C-1 and C-2 were found to be lower than that of C-0 (control one without crosslinking). The Young's modulus for C-1 and C-2 was found to be 8.55 ± 0.57 and 23.72 ± 2.04 kPa, respectively. Hence, it was conveyed that the mechanical strength of C-2 was found to be two times higher than that of C-l, suggesting that the mechanical strength was enhanced upon dual crosslinking in this study also. The adhesion study indicates that silver ink adhesion on the gelation surface is better than that of carbon ink. In addition, the electrical response of C-2 with a screen-printed electrode (SPE) was found to be the same as the commercial polycarbonate (PC) substrate. The result of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay suggested that the silver SPE on C-2 was non-cytotoxic toward L929 fibroblast cells proliferation. The results indicated that C-2 gelatin is a promising material to act as a screen-printing substrate with excellent biodegradable and biocompatible properties.

2.
Macromol Biosci ; 17(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27634372

RESUMO

A DOX-loaded polysaccharide-lecithin reverse micelles triglyceride-based oral delivery nanocarrier (D-PL/TG NPs) conjugated with (i) RGD peptide for targeting to ß1 integrin of M cells and (ii) Lyp-1 peptide for targeting to the p32 receptor of MDA-MB-231 cells is used to investigate the multistage continuous targeting capabilities of these peptide-conjugated nanocarriers (GLD-PL/TG NPs) for tumor therapy. Variations in the targeting efficacy and pharmacokinetic properties are investigated by quantitatively controlling the surface density of different peptides on the nanoparticles. In vitro permeability in a human follicle-associated epithelium model and cytotoxicity against MDA-MB-231 cells indicate that the nanocarriers conjugated with high RGD peptide concentrations display a higher permeability due to the existence of M cells with higher transcytosis activity, but a higher concentration of conjugated Lyp-1 peptide exhibits the lowest cell viability. Being benefited from specific targeting of peptide conjugation, improved bioavailability and enhanced tumor accumulation are achieved by the GLD-PL/TG NPs, leading to better antitumor efficacy. The results of in vivo biodistribution and antitumor studies reveal that the effect of LyP-1 peptide is more predominant than that of RGD peptide. This proof of multistage continuous targeting may open the door to a new generation of oral drug delivery systems in targeted cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Quitosana/química , Lipídeos/química , Nanopartículas/química , Peptídeos/farmacologia , Administração Oral , Animais , Células CACO-2 , Morte Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Endocitose/efeitos dos fármacos , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Feminino , Humanos , Ligantes , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Nanopartículas/ultraestrutura , Peptídeos/química , Peptídeos/farmacocinética , Eletricidade Estática , Distribuição Tecidual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...