Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(1): e10355, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684085

RESUMO

A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.

2.
Adv Wound Care (New Rochelle) ; 11(4): 202-214, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978952

RESUMO

Significance: Tendon injury possesses a high morbidity rate and is difficult to achieve a satisfying prognosis with currently available treatment strategies. Current approaches used for tendon healing always lead to the formation of fibrovascular scar tissue, which significantly compromises the biomechanics of the healed tendon. Moreover, the related functional deficiency deteriorates over time with an increased injury recurrence risk. Small leucine-rich proteoglycans (SLRPs) link and interact with collagen fibrils to regulate tendon structure and biomechanics, which can provide a new and promising method in the field of tendon injury management. Recent Advances: The effect of SLRPs on tendon development has been extensively investigated. SLRP deficiency impairs tendon collagen fibril structure and biomechanic properties, while administration of SLRPs generally benefits tendon wound healing and regains better mechanical properties. Critical Issues: Current knowledge on the role of SLRPs in tendon development and regeneration mostly comes from uninjured knockout mice, and mainly focuses on the morphology description of collagen fibril profile and mechanical properties. Little is known about the regulatory mechanism on the molecular level. Future Directions: This article reviews the current knowledge in this highly translational topic and provides an evidence-based conclusion, thereby encouraging in-depth investigations of SLRPs in tendons and the development of SLRP-based treatments for desired tendon healing.


Assuntos
Proteoglicanos Pequenos Ricos em Leucina , Traumatismos dos Tendões , Animais , Biglicano , Decorina , Camundongos , Tendões , Cicatrização
3.
Brain Behav Immun Health ; 13: 100229, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34589744

RESUMO

The mechanistic relationship between the sexually dimorphic neuroimmune system and the sex-specific outcomes of a pubertal immune challenge is unclear. Therefore, we examined sex differences in the progression of cytotoxic microglial responses and blood-brain barrier (BBB) disruption to a peripubertal lipopolysaccharide (LPS) treatment in brain regions relevant to stress responses and cognitive function. Six-week-old (i.e., stress-sensitive pubertal period) male and female CD-1 mice were treated with LPS (1.5 â€‹mg/kg body weight, ip) or 0.9% saline (LPS-matched volume, ip). Sex and treatment differences in microglial (Iba1+) and apoptotic neuronal (caspase-3+/NeuN+) and non-neuronal (caspase-3+/NeuN-) expression were examined in the hippocampus, medial prefrontal cortex (mPFC), and paraventricular nucleus 24 â€‹h (sickness), one week (symptomatic recovery) and four weeks (early adulthood) post-treatment (n â€‹= â€‹8/group). Microglial morphology was quantified with fractal analyses. Group differences in BBB permeability to 14C-sucrose were examined 24 â€‹h (whole-brain, hippocampus, prefrontal cortex, hypothalamus, and cerebellum) and one week (whole-brain) post-treatment. The acute effects of pubertal LPS were specific to females (i.e., global BBB disruption, altered microglial expression and morphology in the mPFC and hippocampus, increased hippocampal apoptosis). The residual effects of pubertal LPS-induced sickness observed in microglia persisted into adulthood in a sex- and region-specific manner. In addition to highlighting these sex-specific responses of the pubertal neuroimmune system, we report baseline region-specific sex differences in microglia spanning puberty through adulthood. We propose that these sex differences in neuroimmune-neurovascular interactions during the stress-sensitive pubertal period create sex biases in stress-related disorders of brain and behaviour.

4.
Compr Psychoneuroendocrinol ; 7: 100063, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35757063

RESUMO

Adolescence is a critical period of development during which the brain undergoes significant remodeling that impacts behavior later in life. Exposure to stress, and especially immune challenge, during this period triggers changes in brain function resulting in the development of mental disorders in adulthood, such as depression and anxiety. Previous studies from our laboratory have shown that a single exposure to LPS (lipopolysaccharide) during puberty causes enduring depression-like behaviour in females and anxiety-like behaviours in males. However, administration of probiotics during puberty blocked the enduring effects of LPS on depression-like and anxiety-like behaviors in female and male mice, respectively. These results suggest that the gut microbiome is a mediator of the effects of stress on mental health. The objective of the current study is to examine the effectiveness of a novel probiotic Rouxiella badensis subsp. acadiensis (Canan SV-53) in blocking LPS-induced anxiety-like and depression-like behaviors in adult male and female mice. Our results showed that Rouxiella badensis subsp. acadiensis (Canan SV-53) blocked LPS-induced depression-like behavior in female mice. We also found that pubertal treatment with Rouxiella badensis subsp. acadiensis (Canan SV-53) mitigated the LPS-induced decrease in 5HT1A expression in CA1 as well as the LPS-induced increase in 5HT1A expression in the raphe-nuclei in female mice. Contrary to our predictions, pubertal LPS treatment at 6 weeks of age did not induce enduring anxiety-like behavior in males. There was also no difference in anxiety-like behavior between the LPS-sucrose and LPS-probiotic male groups. However, pubertal LPS treatment increased the expression of 5HT1A receptors in the DRN in males, while probiotic exposure mitigated this increase. Our study highlights the consequences of stress exposure (immune challenge) on mental health in adulthood taking into consideration 5HT1A receptors expression at different regions of the brain. It also emphasizes on the importance of considering adolescence as window of opportunities during which probiotic use can alleviate the long-term neural and behavioral alterations induced by stress.

5.
Behav Brain Res ; 399: 113001, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33197456

RESUMO

Depression is a prevalent mood disorder responsible for reduced quality of life for over 264 million people. Depression commonly develops during adolescence and becomes twice as prevalent in females than in males. However, the mechanisms underlying adolescent depression onset and sex differences in the prevalence rate remain unclear. Adolescent exposure to stress and subsequent sensitization of the hypothalamic-pituitary-adrenal (HPA) axis contributes to mood disorder development, and females are particularly vulnerable to HPA sensitization. Repeated exposure to stressors common to adolescent development, like sleep disruption, could partially be responsible for adolescent female susceptibility to depression. To address this possibility, 80 adolescent and adult CD-1 mice (Male, n = 40; Female, n = 40) were manually sleep disrupted for the first four hours of each rest cycle or allowed normal rest for eight consecutive days. Depression-like behavior was assessed with the forced swim test. 5-HT1A and glucocorticoid receptor expression and concurrent cellular activation via glucocorticoid receptor/c-Fos colocalization were examined in various brain regions to assess cellular correlates of depression and HPA-axis activation. Both adolescent male and female mice displayed significantly greater depression-like behavior and prelimbic c-Fos expression after chronic sleep disruption than non-sleep disrupted adolescent and sleep disrupted adult counterparts. However, sleep disrupted adolescent females demonstrated greater dorsal raphe 5-HT1A expression than sleep disrupted adolescent males. Adolescent females and males had decreased medial prefrontal 5-HT1A expression after chronic sleep disruption, but only adolescent females expressed decreased hippocampal 5-HT1A expression compared to controls. Chronic sleep disruption significantly increased corticosterone release, glucocorticoid expression in the CA1, and activation of glucocorticoid immunoreactive cells in the prelimbic cortex of adolescent females but not in adolescent males. These findings suggest that chronic sleep disruption during adolescence could give rise to depressive symptoms in male and female adolescents through differing signaling mechanisms.


Assuntos
Região CA1 Hipocampal/metabolismo , Depressão , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário , Córtex Pré-Frontal/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Privação do Sono , Estresse Psicológico , Adaptação Psicológica/fisiologia , Fatores Etários , Animais , Comportamento Animal/fisiologia , Depressão/etiologia , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores Sexuais , Privação do Sono/complicações , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...