Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 50(5): 363-377, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36949582

RESUMO

Mesembryanthemum crystallinum L. (ice plant) develops salt tolerance during the transition from the juvenile to the adult stage through progressive morphological, physiological, biochemical, and molecular changes. Myo -inositol is the precursor for the synthesis of compatible solute D-pinitol and promotes Na+ transport in ice plants. We previously showed that supplying myo -inositol to 9-day-old seedlings alleviates salt damage by coordinating the expression of genes involved in inositol synthesis and transport, affecting osmotic adjustment and the Na/K balance. In this study, we examined the effects of myo -inositol on physiological parameters and inositol-related gene expression in early- and late-stage juvenile plants. The addition of myo -inositol to salt-treated, hydroponically grown late juvenile plants had no significant effects on growth or photosynthesis. In contrast, supplying exogenous myo -inositol to salt-treated early juvenile plants increased leaf biomass, relative water content, and chlorophyll content and improved PSII activity and CO2 assimilation. The treatment combining high salt and myo -inositol synergistically induced the expression of myo -inositol phosphate synthase (INPS ), myo -inositol O -methyltransferase (IMT ), and inositol transporters (INTs ), which modulated root-to-shoot Na/K ratio and increased leaf D-pinitol content. The results indicate that sufficient myo -inositol is a prerequisite for high salt tolerance in ice plant.


Assuntos
Mesembryanthemum , Plantas Tolerantes a Sal , Plantas Tolerantes a Sal/metabolismo , Mesembryanthemum/genética , Mesembryanthemum/metabolismo , Tolerância ao Sal , Inositol/metabolismo
2.
Physiol Plant ; 172(3): 1619-1629, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33511710

RESUMO

Myo-inositol and its metabolic derivatives such as pinitol, galactinol, and raffinose affect growth and development and are also involved in stress adaptation. Previous studies have identified myo-inositol transporters (INTs) as transporters of Na+ from root to shoot in the halophyte ice plant (Mesembryanthemum crystallinum). We found that the supply of myo-inositol could alleviate the dehydration effects of salt-stressed ice plant seedlings by decreasing the Na/K ratio in roots and increasing the Na/K ratio in shoots. Analyses of the uptake of exogenous myo-inositol revealed that ice plant seedlings contained intrinsic high-affinity transporters and inducible low-affinity uptake systems. The presence of Na+ facilitated both high- and low-affinity myo-inositol uptake. Six INT genes were identified from the ice plant transcriptome and named McINT1a, 1b, 2, 4a, 4b, and 4c, according to the classification of the Arabidopsis INT family. In seedlings treated with myo-inositol, salt, or myo-inositol plus salt, the expression patterns of all McINT members differed in shoot and root, which indicates organ-specific regulation of McINTs by salt and myo-inositol. The expression of McINT2, 4a, 4b, and 4c was induced by salt stress in shoot and root, but that of McINT1a and 1b was salt-induced only in shoot. The expression of pinitol biosynthesis gene IMT1 was induced by salt and myo-inositol, and their combination had a synergistic effect on the accumulation of pinitol. Supply of myo-inositol to salt-treated seedlings alleviated the detrimental effects by maintaining a low root Na/K ratio and providing precursors for the synthesis of compatible solute to maintain the osmotic balance.


Assuntos
Mesembryanthemum , Regulação da Expressão Gênica de Plantas , Inositol , Tolerância ao Sal , Plantas Tolerantes a Sal , Plântula/genética
3.
Bot Stud ; 60(1): 1, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617933

RESUMO

BACKGROUND: Ice plant (Mesembryanthemum crystallinum L.) is a model plant for studying salt-tolerant mechanisms in higher plants. Many salt stress-responsive ice plant genes have been identified with molecular and biochemical approaches. However, no further functional characterization of these genes in host plant due to lack of easy and effective transformation protocols. RESULTS: To establish efficient transformation system of ice plants, three types of ice plant materials, hypocotyl-derived callus, aseptically-grown seedlings and pot-grown juvenile plants, were used to develop Agrobacterium-mediated transformation protocols. The highest transient transformation efficiency was with 5-day-old ice plant callus co-incubated with an Agrobacterium tumefaciens at 2.5 × 109 cells mL-1 for 48 h. The 3-day-old ice plant seedlings with root tip removed were successfully infected with A. tumefaciens or A. rhizogenes, and obtained 85% and 33-100% transient transformation rates, respectively. The transient transformation assays in ice plant callus and seedlings demonstrated that the concentrations of Agrobacteria, the durations of co-incubation time, and the plant growth stages were three important factors affecting the transient transformation efficiencies. Additionally, pot-grown juvenile plants were syringe-injected with two A. rhizogenes strains A8196 and NCPPB 1855, to establish transformed roots. After infections, ice plants were grown hydroponically and showed GUS expressions in transformed roots for 8 consecutive weeks. CONCLUSIONS: Our Agrobacterium-mediated transformation protocols utilized hypocotyl-derived callus and seedlings as plant materials, which can be easily obtained in large quantity. The average successful transient transformation rates were about 2.4-3.0% with callus and 33.3-100.0% with seedlings. We also developed a rapid and efficient protocol to generate transgenic roots by A. rhizogenes infections without laborious and challenging tissue culture techniques. This protocol to establish composite ice plant system demonstrates excellent improvements in efficiency, efficacy, and ease of use over previous ice plant transformation protocols. These Agrobacterium-mediated transformation protocols can be versatile and efficient tools for exploring gene functions at cellular and organ levels of ice plants.

4.
Plant Physiol Biochem ; 80: 211-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24811676

RESUMO

RING-type copines are a small family of plant-specific RING-type ubiquitin ligases. They contain an N-terminal myristoylation site for membrane anchoring, a central copine domain for substrate recognition, and a C-terminal RING domain for E2 docking. RING-type copine McCPN1 (copine1) from halophyte ice plant (Mesembryanthemum crystallinum L.) was previously identified from a salt-induced cDNA library. In this work, we characterize the activity, expression, and localization of McCPN1 in ice plant. An in vitro ubiquitination assay of McCPN1 was performed using two ice plant UBCs, McUBC1 and McUBC2, characterized from the same salt-induced cDNA library. The results showed that McUBC2, a member of the UBC8 family, stimulated the autoubiquitination activity of McCPN1, while McUBC1, a homolog of the UBC35 family, did not. The results indicate that McCPN1 has selective E2-dependent E3 ligase activity. We found that McCPN1 localizes primarily on the plasma membrane and in the nucleus of plant cells. Under salt stress, the accumulation of McCPN1 in the roots increases. A yeast two-hybrid screen was used to search for potential McCPN1-interacting partners using a library constructed from salt-stressed ice plants. Screening with full-length McCPN1 identified several independent clones containing partial Argonaute 4 (AGO4) sequence. Subsequent agro-infiltration, protoplast two-hybrid analysis, and bimolecular fluorescence complementation assay confirmed that McCPN1 and AGO4 interacted in vivo in the nucleus of plant cells. The possible involvement of a catalyzed degradation of AGO4 by McCPN1 in response to salt stress is discussed.


Assuntos
Proteínas Argonautas/metabolismo , Mesembryanthemum/enzimologia , Mesembryanthemum/metabolismo , Proteínas de Plantas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Plantas Tolerantes a Sal/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Plant Mol Biol ; 85(4-5): 429-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24803410

RESUMO

Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1(T) is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.


Assuntos
Arabidopsis/metabolismo , Proteínas Arqueais/metabolismo , Betaína/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Methanosarcinaceae/enzimologia , Arabidopsis/genética , Proteínas Arqueais/genética , Methanosarcinaceae/genética , Plantas Geneticamente Modificadas , Tolerância ao Sal , Cloreto de Sódio , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Água/metabolismo
6.
J Exp Bot ; 64(8): 2385-400, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23580756

RESUMO

SKD1 (suppressor of K+ transport growth defect 1) is an AAA-type ATPase that functions as a molecular motor. It was previously shown that SKD1 accumulates in epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. SKD1 knock-down Arabidopsis mutants showed an imbalanced Na+/K+ ratio under salt stress. Two enzymes involved in protein post-translational modifications that physically interacted with McSKD1 were identified. McCPN1 (copine 1), a RING-type ubiquitin ligase, has an N-terminal myristoylation site that links to the plasma membrane, a central copine domain that interacts with McSKD1, and a C-terminal RING domain that catalyses protein ubiquitination. In vitro ubiquitination assay demonstrated that McCPN1 was capable of mediating ubiquitination of McSKD1. McSnRK1 (sucrose non-fermenting 1-related protein kinase) is a Ser/Thr protein kinase that contains an N-terminal STKc catalytic domain to phosphorylate McSKD1, and C-terminal UBA and KA1 domains to interact with McSKD1. The transcript and protein levels of McSnRK1 increased as NaCl concentrations increased. The formation of an SKD1-SnRK1-CPN1 ternary complex was demonstrated by yeast three-hybrid and bimolecular fluorescence complementation. It was found that McSKD1 preferentially interacts with McSnRK1 in the cytosol, and salt induced the re-distribution of McSKD1 and McSnRK1 towards the plasma membrane via the microtubule cytoskeleton and subsequently interacted with RING-type E3 McCPN1. The potential effects of ubiquitination and phosphorylation on McSKD1, such as changes in the ATPase activity and cellular localization, and how they relate to the functions of SKD1 in the maintenance of Na+/K+ homeostasis under salt stress, are discussed.


Assuntos
Adenosina Trifosfatases/fisiologia , Mesembryanthemum/fisiologia , Proteínas de Plantas/fisiologia , Canais de Potássio/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Plantas Tolerantes a Sal/fisiologia , Adenosina Trifosfatases/metabolismo , Mesembryanthemum/enzimologia , Mesembryanthemum/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Canais de Potássio/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação/fisiologia
7.
Plant Signal Behav ; 8(12): e27433, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24390077

RESUMO

Halophyte Mesembryanthemum crystallinum L. (ice plant) rapidly responds to sudden increases in salinity in its environment by activating specific salt-tolerant mechanisms. One major strategy is to regulate a series of ion transporters and proton pumps to maintain cellular Na(+)/K(+) homeostasis. Plant SKD1 (suppressor of K(+) transport growth defect 1) proteins accumulate in cells actively engaged in the secretory processes, and play a critical role in intracellular protein trafficking. Ice plant SKD1 redistributes from the cytosol to the plasma membrane hours after salt stressed. In combination with present knowledge of this protein, we suggest that stress facilitates SKD1 movement to the plasma membrane where ADP/ATP exchange occurs, and functions in the regulation of membrane components such as ion transporters to avoid ion toxicity.


Assuntos
Adenosina Trifosfatases/metabolismo , Meio Ambiente , Mesembryanthemum/enzimologia , Proteínas de Plantas/metabolismo , Salinidade , Plantas Tolerantes a Sal/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Imunofluorescência , Modelos Biológicos
8.
Funct Plant Biol ; 34(4): 353-359, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-32689362

RESUMO

The halophyte Mesembryanthemum crytallinum L. (ice plant) is marked by giant epidermal bladder cells (EBC). The differentiation of pavement cells into EBC occurs at an early developmental stage. EBC occupy most of the surface area in the aerial parts of salt-stressed mature ice plants. A large vacuolar reservoir for ion and water storage plays an important role in salinity adaptation. To monitor the acidity of the vacuole at different developmental stages of EBC, peels from the abaxial surface were stained with a pH-sensitive dye, neutral red (NR). Presence of both NR-stained (acidic) and NR-unstained (neutral) EBC were found at the juvenile stage in ice plants. Continuous exposure to illumination decreased the acidity of the NR-stained cells. The EBC protein profile illustrated the prominent co-existence of highly acidic and basic proteins in these specialised cells. Major proteins that accumulate in EBC are involved in photosynthesis, sodium compartmentalisation, and defence. Numerous raphide crystals were found in well fertilised ice plants. Salt-stressed cells exhibited changes in the surface charge and element composition of raphide crystals. A disappearance of potassium in the high-salt grown crystals suggests that these crystals might serve as a potassium reservoir to maintain the Na+/K+ homeostasis in this halophyte.

9.
Plant Physiol ; 141(1): 135-46, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16581876

RESUMO

A salt-induced gene mcSKD1 (suppressor of K+ transport growth defect) able to facilitate K+ uptake has previously been identified from the halophyte ice plant (Mesembryanthemum crystallinum). The sequence of mcSKD1 is homologous to vacuolar protein sorting 4, an ATPase associated with a variety of cellular activities-type ATPase that participates in the sorting of vacuolar proteins into multivesicular bodies in yeast (Saccharomyces cerevisiae). Recombinant mcSKD1 exhibited ATP hydrolytic activities in vitro with a half-maximal rate at an ATP concentration of 1.25 mm. Point mutations on active site residues abolished its ATPase activity. ADP is both a product and a strong inhibitor of the reaction. ADP-binding form of mcSDK1 greatly reduced its catalytic activity. The mcSKD1 protein accumulated ubiquitously in both vegetative and reproductive parts of plants. Highest accumulation was observed in cells actively engaging in the secretory processes, such as bladder cells of leaf epidermis. Membrane fractionation and double-labeling immunofluorescence showed the predominant localization of mcSKD1 in the endoplasmic reticulum-Golgi network. Immunoelectron microscopy identified the formation of mcSKD1 proteins into small aggregates in the cytosol and associated with membrane continuum within the endomembrane compartments. These results indicated that this ATPase participates in the endoplasmic reticulum-Golgi mediated protein sorting machinery for both housekeeping function and compartmentalization of excess Na+ under high salinity.


Assuntos
Adaptação Fisiológica/genética , Adenosina Trifosfatases/fisiologia , Retículo Endoplasmático/enzimologia , Complexo de Golgi/enzimologia , Mesembryanthemum/enzimologia , Proteínas de Plantas/fisiologia , Cloreto de Sódio/metabolismo , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/genética , Fracionamento Celular , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Mesembryanthemum/genética , Mesembryanthemum/ultraestrutura , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Mutação Puntual
10.
Plant Mol Biol ; 54(6): 881-93, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15604658

RESUMO

A full-length salt-induced transcript homologous to SKD1 (suppressor of K(+) transport growth defect) of the AAA (ATPase associated with a variety of cellular activities)-type ATPase family has been identified from the halophyte Mesembryanthemum crystallinum (ice plant). The expression of mcSKD1 was induced by 200 mM NaCl or higher in cultured ice plant cells. When cultured ice plant cells were grown in a high K(+) (42.6 mM) medium, the level of mcSKD1 expression decreased. At the whole plant level, constitutive expression of mcSKD1 was observed in roots, stems, leaves and floral organs. Addition of 400 mM NaCl increased the transcript level in roots and stems. The expression of atSKD1 , a homologue gene in Arabidopsis , was down regulated by salt stress. Under salt stress, mcSKD1 was preferentially expressed in the outer cortex of roots and stems and in the epidermal bladder cells of leaves. The mcSKD1 transcript was constitutively expressed in placenta and integuments of the developing floral buds. Expression of the full-length or C-terminal deletion of mcSKD1 was able to complement the K(+) uptake-defect phenotype in mutant Saccharomyces cerevisiae , which is defective in high- and low-affinity K(+) uptake. Deletion of the N-terminal coiled-coil motif of mcSKD1, a structure required for membrane association, resulted in greatly reduced K(+) transport. Expression of mcSKD1 also increased the salt-tolerant ability of yeast mutants and either N- or C-terminal deletion decreased the efficiency. The physiological relevancies of mcSKD1 for K(+) uptake under high salinity environments are discussed.


Assuntos
Perfilação da Expressão Gênica , Mesembryanthemum/genética , Proteínas de Plantas/genética , Potássio/metabolismo , Saccharomyces cerevisiae/genética , Cloreto de Sódio/farmacologia , Expressão Gênica/efeitos dos fármacos , Teste de Complementação Genética , Hibridização In Situ , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...