Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 11(7)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646058

RESUMO

Mungbean (Vigna radiata (L.) R. Wilzeck var. radiata) is a protein-rich short-duration legume that fits well as a rotation crop into major cereal production systems of East and South-East Asia. Salinity stress in arid areas affects mungbean, being more of a glycophyte than cereals. A significant portion of the global arable land is either salt or sodium affected. Thus, studies to understand and improve salt-stress tolerance are imminent. Here, we conducted a genome-wide association study (GWAS) to mine genomic loci underlying salt-stress tolerance during seed germination of mungbean. The World Vegetable Center (WorldVeg) mungbean minicore collection representing the diversity of mungbean germplasm was utilized as the study panel and variation for salt stress tolerance was found in this germplasm collection. The germplasm panel was classed into two agro-climatic groups and showed significant differences in their germination abilities under salt stress. A total of 5288 SNP markers obtained through genotyping-by-sequencing (GBS) were used to mine alleles associated with salt stress tolerance. Associated SNPs were identified on chromosomes 7 and 9. The associated region at chromosome 7 (position 2,696,072 to 2,809,200 bp) contains the gene Vradi07g01630, which was annotated as the ammonium transport protein (AMT). The associated region in chromosome 9 (position 19,390,227 bp to 20,321,817 bp) contained the genes Vradi09g09510 and Vradi09g09600, annotated as OsGrx_S16-glutaredoxin subgroup II and dnaJ domain proteins respectively. These proteins were reported to have functions related to salt-stress tolerance.


Assuntos
Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal , Vigna/genética , Proteínas de Transporte de Cátions/genética , Genoma de Planta , Proteínas de Plantas/genética , Sementes/genética , Vigna/metabolismo
2.
Sci Rep ; 10(1): 2111, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034221

RESUMO

This study provides insights in patterns of distribution of abiotic and biotic stress resilience across Vigna gene pools to enhance the use and conservation of these genetic resources for legume breeding. Vigna is a pantropical genus with more than 88 taxa including important crops such as V. radiata (mung bean) and V. unguiculata (cowpea). Our results show that sources of pest and disease resistance occur in at least 75 percent of the Vigna taxa, which were part of screening assessments, while sources of abiotic stress resilience occur in less than 30 percent of screened taxa. This difference in levels of resilience suggests that Vigna taxa co-evolve with pests and diseases while taxa are more conservative to adapt to climatic changes and salinization. Twenty-two Vigna taxa are poorly conserved in genebanks or not at all. This germplasm is not available for legume breeding and requires urgent germplasm collecting before these taxa extirpate on farm and in the wild. Vigna taxa, which tolerate heat and drought stress are rare compared with taxa, which escape these stresses because of short growing seasons or with taxa, which tolerate salinity. We recommend prioritizing these rare Vigna taxa for conservation and screening for combined abiotic and biotic stress resilience resulting from stacked or multifunctional traits. The high presence of salinity tolerance compared with drought stress tolerance, suggests that Vigna taxa are good at developing salt-tolerant traits. Vigna taxa are therefore of high value for legume production in areas that will suffer from salinization under global climate change.


Assuntos
Vigna/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Resistência à Doença/genética , Pool Gênico , Filogeografia , Melhoramento Vegetal , Estresse Fisiológico/genética , Vigna/genética
3.
Hereditas ; 154: 3, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28149257

RESUMO

BACKGROUND: Single nucleotide polymorphism (SNP) markers are the method of choice for genetic analyses including diversity and quantitative trait loci (QTL) studies. Marker validation is essential for QTL studies, but the cost and workload are considerable when large numbers of markers need to be verified. Marker systems with low development costs would be most suitable for this task. RESULTS: We have tested allele specific polymerase chain reaction (PCR), tetra markers and a genotyping tool based on the single strand specific nuclease CEL-I to verify randomly selected SNP markers identified previously either with a SNP array or by genotyping by sequencing in rice and mungbean, respectively. The genotyping capacity of allele-specific PCR and tetra markers was affected by the sequence context surrounding the SNP; SNPs located in repeated sequences and in GC-rich stretches could not be correctly identified. In contrast, CEL-I digestion of mixed fragments produced from test and reference DNA reliably pinpointed the correct genotypes, yet scoring of the genotypes became complicated when multiple SNPs were present in the PCR fragments. A cost analysis showed that as long the sample number remains small, CEL-I genotyping is more cost-effective than tetra markers. CONCLUSIONS: CEL-I genotyping performed better in terms of genotyping accuracy and costs than tetra markers. The method is highly useful for validating SNPs in small to medium size germplasm panels.


Assuntos
Oryza/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Vigna/genética , Alelos , Primers do DNA , DNA de Plantas/genética , Técnicas de Genotipagem , Reação em Cadeia da Polimerase/economia , Análise de Sequência de DNA
4.
BMC Plant Biol ; 16(1): 159, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422285

RESUMO

BACKGROUND: Bruchid beetles are an important storage pest of grain legumes. Callosobruchus sp. infect mungbean (Vigna radiata) at low levels in the field, multiply during grain storage and can destroy seed stocks in a few months. Resistance against bruchid beetles has been found in wild mungbean V. radiata var. sublobata TC1966 and in cultivated mungbean line V2802. RESULTS: Bruchid resistance data were obtained from recombinant inbred line populations TC1966 (V. radiata var. sublobata) × NM92 (F12) and V2802 (V. radiata) × NM94 (F7). More than 6,000 single nucleotide polymorphic markers were generated through genotyping by sequencing (GBS) for each of these populations and were used to map bruchid resistance genes. One highly significant quantitative trait locus (QTL) associated with bruchid resistance was mapped to chromosome 5 on genetic maps of both populations, suggesting that TC1966 and V2802 contain the same resistance locus. Co-segregation of all markers associated with resistance indicated the presence of only one major resistance QTL on chromosome 5, while QTL analysis based on physical map positions of the markers suggested the presence of multiple QTLs on different chromosomes. The diagnostic capacity of the identified molecular markers located in the QTL to correctly predict resistance was up to 100 %. CONCLUSIONS: Molecular markers tightly linked to bruchid resistance loci of two different mungbean resistance sources were developed and validated. These markers are highly useful for developing resistant lines.


Assuntos
Besouros/fisiologia , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Vigna/genética , Animais , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Análise de Sequência de DNA , Vigna/imunologia , Vigna/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...