Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 460(Pt 1): 140475, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047495

RESUMO

Due to its numerous biological activities, such as antioxidant, anti-inflammatory, antitumor, anti-atherosclerosis, anti-aging, anti-osteoporosis, anti-obesity, estrogenic, neuroprotective and cardioprotective effects, resveratrol has attracted a lot of attention in the food and pharmaceutical industries as a promising bioactive. However, low solubility in aqueous media, limited bioavailability, and low stability of resveratrol in hostile environments limit its applications. The necessity for a summary of recent developments is highlighted by the growing body of research on resveratrol encapsulation as a means of overcoming the mentioned application constraints. This review highlights the present developments in resveratrol delivery techniques, including spray drying, liposomes, emulsions, and nanoencapsulation. Bioaccessibility, bioavailability, stability, and release of resveratrol from encapsulating matrices are discussed. Future research should focus on encapsulation approaches with high loading capacity, targeted delivery, and controlled release. In light of the growing interest in resveratrol and the increasing complexity of resveratrol-based formulations, review of current encapsulation methods is crucial to address existing limitations and pave the way for the development of next-generation delivery systems. This review discusses how the delivery systems with different structures and release mechanisms can unlock the full potential and benefits of resveratrol by enhancing its bioavailability and stability.


Assuntos
Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Resveratrol , Resveratrol/química , Resveratrol/farmacologia , Resveratrol/administração & dosagem , Humanos , Animais , Disponibilidade Biológica , Lipossomos/química
2.
ACS Omega ; 8(31): 28249-28257, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576665

RESUMO

Echium oil (EO) contains substantial amounts of omega-3 fatty acids, which are important because of their benefits to human health. However, they are prone to oxidation. The aim of this study was to obtain the optimum conditions of microencapsulation of EO using spray drying by applying the response surface methodology (RSM). Central composite circumscribed design (CCC) was employed with a ratio of maltodextrin (MD):EmCap modified starch (MS) (80-90%, w/w), oil concentration (15-25%, w/w), and homogenization speed (5-15 × 103 rpm) as independent variables affecting droplet size (µm) and viscosity (Pa·s), which were chosen as responses for the emulsification process. The results revealed that the emulsion conditions containing MD:MS (89.7%:10.3%, w/w), oil concentration of (16.0%), and homogenization speed at (14.8 × 103 rpm) were found to be the optimum conditions. Furthermore, for encapsulation, CCC was employed with inlet temperature of 140-180 °C, air flow of 20-30%, and pump rates of 15-25% as independent variables. Total yield (%) and encapsulation efficiency (%) were chosen as responses for the encapsulation process. On the other hand, optimum conditions for encapsulation were as follows: inlet temperature of 140 °C, airflow rate of (30%) 0.439 m3/h, pump rate of (15%) 4.5 mL/min with respect to selected responses.

3.
ACS Omega ; 8(21): 18516-18522, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273584

RESUMO

In recent years, there has been a growing interest in edible and biodegradable films due to their sustainability, environmental friendliness, and their functionality. In this work, Aloe vera oil-added agar-gelatin films were prepared and characterized in terms of water content, degree of swelling, water solubility, antioxidant activity, and antimicrobial activity. The possibility of using these edible films for Kashar cheese packaging during cold storage was investigated. Physical, chemical, and microbiological properties of the packaged cheese samples were examined for 20 days of cold storage at 4 °C. A. vera oil-added films were found to have antibacterial activity against Escherichia coli and Staphylococcus aureus and antifungal activities against Aspergillus niger and Candida albicans. A. vera oil-added films showed high antioxidant activities, increasing with the increasing A. vera oil percentage in the formulation. The current study showed that at the end of 20 days of storage period, bacterial growth in A. vera oil-incorporated film-covered samples was 2.30 log CFU/g lower than the control samples, and the amount of yeast and mold in A. vera oil-added film-covered samples was 3.37 log CFU/g lower than control samples. This shows the efficiency of A. vera oil-incorporated agar-gelatin films during the refrigerated storage period. Our data evidenced the positive effect of A. vera oil-added agar-gelatin films on Kashar cheese packaging as an innovative and sustainable technique to maintain cheese quality and prevent food loss during storage.

4.
Food Sci Nutr ; 11(3): 1426-1440, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911843

RESUMO

Omega-3 fatty acid consumption is getting more common due to its positive impacts on human health. Since consumers cannot get their omega-3 needs from natural sources, omega-3-rich products play an essential part in the diet. However, they are highly susceptible to oxidation; thus, storage conditions affect their quality. Product form is also another critical factor for stability. In this study, fatty acid composition, oxidative stability, and sensory properties of different omega-3 products having varied packaging types were investigated. Moreover, the effect of consumer behavior regarding the recommended usage was assessed during storage. Syrup forms (maximum values at the end of the storage: PV = 44.6 meq/kg oil for S32, p-AV = 16.87 for S22, and TOTOX = 96.94 for S11) are more susceptible to oxidation than capsule (maximum values at the end of the storage: PV = 7.62 meq/kg oil for C31, p-AV = 19.58 for C12, and TOTOX = 30.44 for C12) and chewable forms (maximum values at the end of the storage: PV = 26.14 meq/kg oil for G12, p-AV = 13.47 for G12, and TOTOX = 65.76 for G12). In addition, capsules complied more with limit values during storage and were better protected according to the sensory scores. The aroma and taste of the omega-3 products generally changed in a negative manner during storage. Capsulated samples were better protected according to the sensory evaluation scores at the end of the storage period. Fish oil samples belonging to the same company but provided from different stores showed significant differences, which is an indicator of nonstandard raw material, ingredient, or processing.

5.
Heliyon ; 8(2): e08974, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35243093

RESUMO

The search for the plant origin bioactive compounds is increasing over animal origin compounds. Echium oil (EO) contains high amounts of plant based omega-3 fatty acids. Moreover, curcumin addition may increase the release of these omega-3 fatty acids during digestion. The study's objective is to determine the bioaccessibility of curcumin in simulated intestinal digestion conditions and the release behavior of fatty acids of echium oil from nanoemulsions. We prepared curcumin and EO nanoemulsions with a microfluidizer using two different concentrations of surfactant, Tween 80 (5% and 10%). Emulsion stability tests, antioxidant analysis, in vitro oil release and fatty acid composition assays were conducted. Results showed that curcumin-containing nanoemulsions provide higher radical scavenging activity than the EO nanoemulsions. In addition, in vitro bioaccessibility of curcumin after in vitro simulated intestinal digestion was calculated as 35.5%. Gas chromatography results of the digested nanoemulsions revealed that curcumin addition decreases oleic acid release while increasing stearidonic acid (SDA) release.

6.
Lebensm Wiss Technol ; 134: 109947, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32834119

RESUMO

In this study, it was aimed to investigate the effects of both using curcumin and microencapsulation method on in vitro release behaivour of chia seed oil and its antioxidant potential during simulated gastrointestinal (GI) tract. Maltodextrin (MD) and gum Arabic (GA) was used as wall materials for freeze dried capsules. Sample 6, having 1:3 MD to GA ratio, 1:5 chia seed oil to wall material ratio and 40% total dry matter content, was found to have the optimum results in terms of emulsion stability (CI% = 0), zeta potential (-32.2 ± 0.8 mV) and size distribution (600 ± 8 nm). Moreover, release profiles of encapsulated chia seed oil samples were evaluated to determine if curcumin addition has any significant effect. The results revealed that curcumin addition decreased the release of chia seed oil from 44.6% to 37.2%. On contrary, it increased total phenolic content of in fraction of intestine to 22 mg gallic acid equivalents (GAE)/L.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA