Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Anal Chem ; 96(14): 5537-5545, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38545995

RESUMO

The chemical degradation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-based aqueous energy storage and catalytic systems is pH sensitive. Herein, we voltammetrically monitor the local pH (pHlocal) at a Pt ultramicroelectrode (UME) upon electro-oxidation of imidazolium-linker functionalized TEMPO and show that its decrease is associated with the greater acidity of the cationic (oxidized) rather than radical (reduced) form of TEMPO. The protons that drive the decrease in pH arise from hydrolysis of the conjugated imidazolium-linker functional group of 4-[2-(N-methylimidazolium)acetoxy]-2,2,6,6-tetramethylpiperidine-1-oxyl chloride (MIMAcO-T), which was studied in comparison with 4-hydroxyl-TEMPO (4-OH-T). Voltammetric hysteresis is observed during the electrode oxidation of 4-OH-T and MIMAcO-T at a Pt UME in an unbuffered aqueous solution. The hysteresis arises from the pH-dependent formation and dissolution of Pt oxides, which interact with pHlocal in the vicinity of the UME. We find that electrogenerated MIMAcO-T+ significantly influences pHlocal, whereas 4-OH-T+ does not. Finite element analysis reveals that the thermodynamic and kinetic acid-base properties of MIMAcO-T+ are much more favorable than those of its reduced counterpart. Imidazolium-linker functionalized TEMPO molecules comprising different linking groups were also investigated. Reduced TEMPO molecules with carbonyl linkers behave as weak acids, whereas those with alkyl ether linkers do not. However, oxidized TEMPO+ molecules with alkyl ether linkers exhibit more facile acid-base kinetics than those with carbonyl ones. Density functional theory calculations confirm that OH- adduct formation on the imidazolium-linker functional group of TEMPO is responsible for the difference in the acid-base properties of the reduced and oxidized forms.

2.
Anal Chem ; 94(37): 12691-12698, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36074896

RESUMO

A "Water-in-Salt" electrolyte solution (WiSE) is a promising aqueous medium for lithium-ion batteries containing highly concentrated electrolytes. For the increased kinetic overpotential of water oxidation in WiSE, the formation of an interfacial layer (IFL) on a positively electrified electrode is crucial. Nonetheless, most related studies have been restricted to theoretical approaches. In this Article, we voltammetrically study the Cl-/Cl3-/Cl2 redox reaction on Pt and glassy carbon (GC) electrodes in WiSE containing LiTFSI (WiSELiTFSI) and demonstrate that careful monitoring of Cl-/Cl3- redox voltammetry can allow recognition of an IFL formed on a positively electrified electrode. The voltammetric wave attributed to the electro-oxidation of Cl- on a GC electrode was negatively more shifted as the molal concentration of LiTFSI was increased from 0.5 to 6 m, while there was no shift on Pt. Also, there was voltammetric resolution into two peaks associated with Cl-/Cl3- and Cl3-/Cl2 on the GC electrode in WiSELiTFSI, while only unresolved, one redox-paired voltammograms were observed on Pt, regardless of the molal concentration of LiTFSI. These two main voltammetric features indicate the LiTFSI-induced IFL coupled with Cl- and Cl3- on a GC electrode induced by an applied potential of ∼2 V versus the point of zero charge (PZC). We found other halide/halogen redox reactions did not show differentiated voltammetric behaviors in WiSELiTFSI, which demonstrates the uniqueness of the Cl-/Cl3- redox reaction for recognizing the IFL formed on a positively charged electrode surface. Lastly, a strong interaction between the IFL and Cl species was also confirmed by XPS measurements.


Assuntos
Carbono , Água , Eletrólitos , Halogênios , Lítio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...