Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(6): 10500-10511, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157595

RESUMO

Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technique. Here, we present a method to integrate optical coherence tomography (OCT) and SECM for complementary imaging by adding orthogonal scanning to the SECM configuration. The co-registration of SECM and OCT is automatic, as all system components are shared in the same order, eliminating the need for additional optical alignment. The proposed multimode imaging system is compact and cost-effective while providing the benefits of imaging aiming and guidance. Furthermore, speckle noise can be suppressed by averaging the speckles generated by shifting the spectral-encoded field in the direction of dispersion. Using a near infrared (NIR) card and a biological sample, we demonstrated the capability of the proposed system by showing SECM imaging at depths of interest guided by the OCT in real time and speckle noise reduction. Interfaced multimodal imaging of SECM and OCT was implemented at a speed of approximately 7 frames/s using fast-switching technology and GPU processing.

2.
Opt Express ; 30(15): 27273-27284, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236901

RESUMO

Wavelength-tunable spiral-phase-contrast (SPC) imaging was experimentally accomplished in the visible wavelengths spanning a broad bandwidth of ∼200 nm based on a single off-axis spiral phase mirror (OSPM). By the rotation of an OSPM, which was designed with an integer orbital angular momentum (OAM) of l = 1 at a wavelength of 561 nm and incidence angle of 45°, high-quality SPC imaging was obtained at different wavelengths. For the comparison with wavelength-tunable SPC imaging using an OSPM, SPC imaging using a spiral phase plate (manufactured to generate an OAM of l = 1 at 561 nm) was performed at three wavelengths (473, 561, and 660 nm), resulting in clear differences. Theoretically, based on field tracing simulations, high-quality wavelength-tunable SPC imaging could be demonstrated in a very broad bandwidth of ∼400 nm, which is beyond the bandwidth of ∼200 nm obtained experimentally. This technique contribute to developing high-performance wavelength-tunable SPC imaging by simply integrating an OSPM into the current optical imaging technologies.

3.
Opt Lett ; 46(19): 4887, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598225

RESUMO

This publisher's note contains corrections to Opt. Lett.46, 4216 (2021)OPLEDP0146-959210.1364/OL.432413.

4.
Opt Lett ; 46(17): 4216-4219, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469977

RESUMO

Wavelength-tunable optical vortices with a topological charge equal to l=1 of orbital angular momentum (OAM) were experimentally realized using a single off-axis spiral phase mirror (OSPM) with lasers of various visible-light wavelengths. Using an OSPM designed for 561 nm and an incidence angle of 45°, circular doughnut-shaped l=1 optical vortices were obtained at 561, 473, and 660 nm by rotating the OSPM to modify the laser incidence angle. Wavelength-tunable l=1 optical vortices were obtained at the respective incidence angles of 45°, 53.4°, and 33.7°, because the effective geometrical thickness of the OSPM, which determines the order of OAM, was identical at each wavelength. This flexible OSPM which operates over a wide wavelength range will provide continuously wavelength-tunable optical vortices for applications in the fields of advanced optics and photonics in which optical vortices with wide wavelength tunability are in demand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...