Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 55(11): 565-570, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36016502

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and devastating disease whose pathogenesis is associated with a phenotypic switch of pulmonary arterial vascular smooth muscle cells (PASMCs). Bone morphogenetic protein (BMP) signaling and potassium two pore domain channel subfamily K member 3 (KCNK3) play crucial roles in PAH pathogenesis. However, the relationship between BMP signaling and KCNK3 expression in the PASMC phenotypic switching process has not been studied. In this study, we explored the effect of BMPs on KCNK3 expression and the role of KCNK3 in the BMP-mediated PASMC phenotypic switch. Expression levels of BMP receptor 2 (BMPR2) and KCNK3 were downregulated in PASMCs of rats with PAH compared to those in normal controls, implying a possible association between BMP/BMPR2 signaling and KCNK3 expression in the pulmonary vasculature. Treatment with BMP2, BMP4, and BMP7 significantly increased KCNK3 expression in primary human PASMCs (HPASMCs). BMPR2 knockdown and treatment with Smad1/5 signaling inhibitor substantially abrogated the BMP-induced increase in KCNK3 expression, suggesting that KCNK3 expression in HPASMCs is regulated by the canonical BMP-BMPR2-Smad1/5 signaling pathway. Furthermore, KCNK3 knockdown and treatment with a KCNK3 channel blocker completely blocked BMP-mediated anti-proliferation and expression of contractile marker genes in HPAMSCs, suggesting that the expression and functional activity of KCNK3 are required for BMP-mediated acquisition of the quiescent PASMC phenotype. Overall, our findings show a crosstalk between BMP signaling and KCNK3 in regulating the PASMC phenotype, wherein BMPs upregulate KCNK3 expression and KCNK3 then mediates BMP-induced phenotypic switching of PASMCs. Our results indicate that the dysfunction and/or downregulation of BMPR2 and KCNK3 observed in PAH work together to induce aberrant changes in the PASMC phenotype, providing insights into the complex molecular pathogenesis of PAH. [BMB Reports 2022; 55(11): 565-570].


Assuntos
Hipertensão Pulmonar , Músculo Liso Vascular , Proteínas do Tecido Nervoso , Canais de Potássio de Domínios Poros em Tandem , Animais , Humanos , Ratos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proliferação de Células , Células Cultivadas , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Transdução de Sinais , Canais de Potássio de Domínios Poros em Tandem/genética , Proteínas do Tecido Nervoso/genética
2.
Pharmaceutics ; 13(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34452268

RESUMO

Stem cell factor (SCF) and its receptor, cKIT, are novel regulators of pathological neovascularization in the eye, which suggests that inhibition of SCF/cKIT signaling may be a novel pharmacological strategy for treating neovascular age-related macular degeneration (AMD). This study evaluated the therapeutic potential of a newly developed fully human monoclonal antibody targeting cKIT, NN2101, in a murine model of neovascular AMD. In hypoxic human endothelial cells, NN2101 substantially inhibited the SCF-induced increase in angiogenesis and activation of the cKIT signaling pathway. In a murine model of neovascular AMD, intravitreal injection of NN2101 substantially inhibited the SCF/cKIT-mediated choroidal neovascularization (CNV), with efficacy comparable to aflibercept, a vascular endothelial growth factor inhibitor. A combined intravitreal injection of NN2101 and aflibercept resulted in an additive therapeutic effect on CNV. NN2101 neither caused ocular toxicity nor interfered with the early retinal vascular development in mice. Ocular pharmacokinetic analysis in rabbits indicated that NN2101 demonstrated a pharmacokinetic profile suitable for intravitreal injection. These findings provide the first evidence of the potential use of the anti-cKIT blocking antibody, NN2101, as an alternative or additive therapeutic for the treatment of neovascular AMD.

3.
Hypertension ; 76(6): 1778-1786, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33100045

RESUMO

Loss of BMP (bone morphogenic protein) signaling induces a phenotype switch of pulmonary arterial smooth muscle cells (PASMCs), which is the pathological basis of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Here, we identified FGF12 (fibroblast growth factor 12) as a novel regulator of the BMP-induced phenotype change in PASMCs and elucidated its role in pulmonary vascular remodeling during PAH development. Using murine models of PAH and lung specimens of patients with PAH, we observed that FGF12 expression was significantly reduced in PASMCs. In human PASMCs, FGF12 expression was increased by canonical BMP signaling. FGF12 knockdown blocked the antiproliferative and prodifferentiation effect of BMP on human PASMCs, suggesting that FGF12 is required for the BMP-mediated acquisition of the quiescent and differentiated PASMC phenotype. Mechanistically, FGF12 regulated the BMP-induced phenotype change by inducing MEF2a (myocyte enhancer factor 2a) phosphorylation via p38MAPK signaling, thereby modulating the expression of MEF2a target genes involved in cell proliferation and differentiation. Furthermore, we observed that TG (transgenic) mice with smooth muscle cell-specific FGF12 overexpression were protected from chronic hypoxia-induced PAH development, pulmonary vascular remodeling, and right ventricular hypertrophy. Consistent with the in vitro data using human PASMCs, FGF12 TG mice showed increased MEF2a phosphorylation and a substantial change in MEF2a target gene expression, compared with the WT (wild type) controls. Overall, our findings demonstrate a novel BMP/FGF12/MEF2a pathway regulating the PASMC phenotype switch and suggest FGF12 as a potential target for the development of therapeutics for ameliorating pulmonary vascular remodeling in PAH.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Remodelação Vascular/genética , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células/genética , Células Cultivadas , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley
4.
Exp Mol Med ; 52(10): 1744-1753, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33051573

RESUMO

Dipeptidyl peptidase-4 (DPP-4) inhibitors are used for the treatment of type 2 diabetes mellitus (DM). Recent studies have shown that beyond their effect in lowing glucose, DPP-4 inhibitors mitigate DM-related microvascular complications, such as diabetic retinopathy. However, the mechanism by which pathological retinal neovascularization, a major clinical manifestation of diabetic retinopathy, is inhibited is unclear. This study sought to examine the effects of evogliptin, a potent DPP-4 inhibitor, on pathological retinal neovascularization in mice and elucidate the mechanism by which evogliptin inhibits angiogenesis mediated by vascular endothelial growth factor (VEGF), a key factor in the vascular pathogenesis of proliferative diabetic retinopathy (PDR). In a murine model of PDR, an intravitreal injection of evogliptin significantly suppressed aberrant retinal neovascularization. In human endothelial cells, evogliptin reduced VEGF-induced angiogenesis. Western blot analysis showed that evogliptin inhibited the phosphorylation of signaling molecules associated with VEGF-induced cell adhesion and migration. Moreover, evogliptin substantially inhibited the VEGF-induced activation of adenosine 5'-diphosphate ribosylation factor 6 (Arf6), a small guanosine 5'-triphosphatase (GTPase) that regulates VEGF receptor 2 signal transduction. Direct activation of Arf6 using a chemical inhibitor of Arf-directed GTPase-activating protein completely abrogated the inhibitory effect of evogliptin on VEGF-induced activation of the angiogenic signaling pathway, which suggests that evogliptin suppresses VEGF-induced angiogenesis by blocking Arf6 activation. Our results provide insights into the molecular mechanism of the direct inhibitory effect of the DPP-4 inhibitor evogliptin on pathological retinal neovascularization. In addition to its glucose-lowering effect, the antiangiogenic effect of evogliptin could also render it beneficial for individuals with PDR.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Piperazinas/farmacologia , Neovascularização Retiniana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Inibidores da Angiogênese/farmacologia , Animais , Modelos Animais de Doenças , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Fosforilação , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Transdução de Sinais/efeitos dos fármacos
5.
Arterioscler Thromb Vasc Biol ; 39(10): 2120-2131, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31434494

RESUMO

OBJECTIVE: Aberrant neovascularization is a leading cause of blindness in several eye diseases, including age-related macular degeneration and proliferative diabetic retinopathy. The identification of key regulators of pathological ocular neovascularization has been a subject of extensive research and great therapeutic interest. Here, we explored the previously unrecognized role of cKIT and its ligand, SCF (stem cell factor), in the pathological ocular neovascularization process. Approach and Results: Compared with normoxia, hypoxia, a crucial driver of neovascularization, caused cKIT to be highly upregulated in endothelial cells, which significantly enhanced the angiogenic response of endothelial cells to SCF. In murine models of pathological ocular neovascularization, such as oxygen-induced retinopathy and laser-induced choroidal neovascularization models, cKIT and SCF expression was significantly increased in ocular tissues, and blockade of cKIT and SCF using cKit mutant mice and anti-SCF neutralizing IgG substantially suppressed pathological ocular neovascularization. Mechanistically, SCF/cKIT signaling induced neovascularization through phosphorylation of glycogen synthase kinase-3ß and enhancement of the nuclear translocation of ß-catenin and the transcription of ß-catenin target genes related to angiogenesis. Inhibition of ß-catenin-mediated transcription using chemical inhibitors blocked SCF-induced in vitro angiogenesis in hypoxia, and injection of a ß-catenin agonist into cKit mutant mice with oxygen-induced retinopathy significantly enhanced pathological neovascularization in the retina. Conclusions; Our data reveal that SCF and cKIT are promising novel therapeutic targets for treating vision-threatening ocular neovascular diseases.


Assuntos
Regulação da Expressão Gênica , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Neovascularização Retiniana/genética , Fator de Células-Tronco/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Análise de Variância , Inibidores da Angiogênese/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Hipóxia/complicações , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-kit/genética , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Transdução de Sinais/genética
6.
Int J Nanomedicine ; 12: 4813-4822, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740387

RESUMO

Pathological angiogenesis is one of the major symptoms of severe ocular diseases, including corneal neovascularization. The blockade of vascular endothelial growth factor (VEGF) action has been recognized as an efficient strategy for treating corneal neovascularization. In this study, we aimed to investigate whether nanoparticle-based delivery of apatinib, a novel and selective inhibitor of VEGF receptor 2, inhibits VEGF-mediated angiogenesis and suppresses experimental corneal neovascularization. Water-insoluble apatinib was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro angiogenesis assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles potently inhibited VEGF-induced tube formation, scratch wounding migration, and proliferation of human endothelial cells. In a rat model of alkali burn injury-induced corneal neovascularization, a subconjunctival injection of Apa-HSA-PEG nanoparticles induced a significant decrease in neovascularization compared to that observed with an injection of free apatinib solution or phosphate-buffered saline. An in vivo distribution study using HSA-PEG nanoparticles loaded with fluorescent hydrophobic model drugs revealed the presence of a substantial number of nanoparticles in the corneal stroma within 24 h after injection. These in vitro and in vivo results demonstrate that apatinib-loaded nanoparticles may be promising for the prevention and treatment of corneal neovascularization-related ocular disorders.


Assuntos
Indutores da Angiogênese/administração & dosagem , Neovascularização da Córnea/tratamento farmacológico , Nanopartículas/administração & dosagem , Neovascularização Patológica/tratamento farmacológico , Piridinas/administração & dosagem , Indutores da Angiogênese/farmacologia , Animais , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanopartículas/química , Polietilenoglicóis/química , Piridinas/farmacologia , Ratos Sprague-Dawley , Albumina Sérica/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...