Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 10(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560514

RESUMO

Safflower (Carthamus tinctorius L.) has long been grown as a crop due to its commercial utility as oil, animal feed, and pharmacologically significant secondary metabolites. The integration of omics approaches, including genomics, transcriptomics, metabolomics, and proteomics datasets, has provided more comprehensive knowledge of the chemical composition of crop plants for multiple applications. Knowledge of a metabolome of plant is crucial to optimize the evolution of crop traits, improve crop yields and quality, and ensure nutritional and health factors that provide the opportunity to produce functional food or feedstuffs. Safflower contains numerous chemical components that possess many pharmacological activities including central nervous, cardiac, vascular, anticoagulant, reproductive, gastrointestinal, antioxidant, hypolipidemic, and metabolic activities, providing many other human health benefits. In addition to classical metabolite studies, this review focuses on several metabolite-based working techniques and updates to provide a summary of the current medical applications of safflower.

2.
Food Sci Biotechnol ; 26(5): 1379-1389, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30263673

RESUMO

Lipophilic bioactive compounds and hydrophilic primary metabolites from potato (solanum tubersum L.) tubers with different-colored flesh (white-, yellow-, red-, and purple) were characterized. The carotenoid content was relatively higher in red-colored potatoes, in which lutein was most plentiful. Among the other lipophilic compounds analyzed, including policosanols, tocopherols, and phytosterols, octacosanol was measured in the largest amount, followed by ß-sitosterol, irrespective of color variations. Forty-three hydrophilics consisting of amino acids, organic acids, sugars, and sugar alcohols and 18 lipophilics were subjected to data-mining processes. The results of multivariate statistical analyses clearly distincted the different varieties and separated red-fleshed potatoes from other color-fleshed potatoes according to abundance of amino acids, sugars, and carotenoids. This study confirmed the metabolic association-related biochemical pathway between metabolite characteristic and color differences in potato tubers. These results can facilitate understanding the metabolic differences among diverse colored potatoes and provide fruitful information for genetic engineering of potato cultivars.

3.
Food Sci Biotechnol ; 25(1): 283-291, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30263269

RESUMO

We determined the phytochemical diversity, including carotenoids, flavonoids, anthocyanins, and phenolic acids, in sweet potatoes (Ipomoea batatas L.) with distinctive flesh colors (white, orange, and purple) and identified hydrophilic primary metabolites. Carotenoid content was considerably higher in orange-fleshed sweet potatoes, wherein ß-carotene was the most plentiful, and anthocyanins were detected only in purple-fleshed sweet potatoes. The levels of phenolic acids and flavonoids were relatively higher in purple-fleshed sweet potatoes than those in the other two varieties. Forty-one primary and 18 secondary metabolite profiles were subjected to multivariate statistical analyses, which fully distinguished among the varieties and separated orange- and purple-fleshed sweet potatoes from white-fleshed sweet potatoes based on the high levels of sugars, sugar alcohols, and secondary metabolites. This is the first study to determine comprehensive metabolic differences among different color-fleshed sweet potatoes and provides useful information for genetic manipulation of sweet potatoes to influence primary and secondary metabolism.

4.
Plant Cell ; 26(9): 3745-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25228340

RESUMO

The tropane alkaloids, hyoscyamine and scopolamine, are medicinal compounds that are the active components of several therapeutics. Hyoscyamine and scopolamine are synthesized in the roots of specific genera of the Solanaceae in a multistep pathway that is only partially elucidated. To facilitate greater understanding of tropane alkaloid biosynthesis, a de novo transcriptome assembly was developed for Deadly Nightshade (Atropa belladonna). Littorine is a key intermediate in hyoscyamine and scopolamine biosynthesis that is produced by the condensation of tropine and phenyllactic acid. Phenyllactic acid is derived from phenylalanine via its transamination to phenylpyruvate, and mining of the transcriptome identified a phylogenetically distinct aromatic amino acid aminotransferase (ArAT), designated Ab-ArAT4, that is coexpressed with known tropane alkaloid biosynthesis genes in the roots of A. belladonna. Silencing of Ab-ArAT4 disrupted synthesis of hyoscyamine and scopolamine through reduction of phenyllactic acid levels. Recombinant Ab-ArAT4 preferentially catalyzes the first step in phenyllactic acid synthesis, the transamination of phenylalanine to phenylpyruvate. However, rather than utilizing the typical keto-acid cosubstrates, 2-oxoglutarate, pyruvate, and oxaloacetate, Ab-ArAT4 possesses strong substrate preference and highest activity with the aromatic keto-acid, 4-hydroxyphenylpyruvate. Thus, Ab-ArAT4 operates at the interface between primary and specialized metabolism, contributing to both tropane alkaloid biosynthesis and the direct conversion of phenylalanine to tyrosine.


Assuntos
Atropa belladonna/enzimologia , Vias Biossintéticas , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Raízes de Plantas/enzimologia , Transaminases/metabolismo , Tropanos/metabolismo , Atropa belladonna/genética , Vias Biossintéticas/genética , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Cinética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Família Multigênica , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transaminases/genética , Transcriptoma/genética , Tropanos/química
5.
J Agric Food Chem ; 61(28): 6999-7007, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23782237

RESUMO

In the present study, carotenoids, anthocyanins, and phenolic acids of cauliflowers ( Brassica oleracea L. ssp. botrytis) with various colored florets (white, yellow, green, and purple) were characterized to determine their phytochemical diversity. Additionally, 48 metabolites comprising amino acids, organic acids, sugars, and sugar alcohols were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). Carotenoid content was considerably higher in green cauliflower; anthocyanins were detected only in purple cauliflower. Phenolic acids were higher in both green and purple cauliflower. Results of partial least-squares discriminant, Pearson correlation, and hierarchical clustering analyses showed that green cauliflower is distinct on the basis of the high levels of amino acids and clusters derived from common or closely related biochemical pathways. These results suggest that GC-TOFMS-based metabolite profiling, combined with chemometrics, is a useful tool for determining phenotypic variation and identifying metabolic networks connecting primary and secondary metabolism.


Assuntos
Brassica/metabolismo , Metaboloma , Aminoácidos/análise , Antocianinas/análise , Brassica/classificação , Carboidratos/análise , Ácidos Carboxílicos/análise , Carotenoides/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidroxibenzoatos/análise , Análise dos Mínimos Quadrados , Pigmentação , Extratos Vegetais/química , Metabolismo Secundário , Especificidade da Espécie , Álcoois Açúcares/análise
6.
J Biol Chem ; 288(5): 3163-73, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23243312

RESUMO

Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.


Assuntos
Alquil e Aril Transferases/metabolismo , Biocatálise , Vias Biossintéticas , Sesquiterpenos/metabolismo , Valeriana/enzimologia , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidrocarbonetos/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesquiterpenos/química , Especificidade por Substrato , Valeriana/genética
7.
Methods Enzymol ; 517: 139-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23084937

RESUMO

Development of next-generation sequencing, coupled with the advancement of computational methods, has allowed researchers to access the transcriptomes of recalcitrant genomes such as those of medicinal plant species. Through the sequencing of even a few cDNA libraries, a broad representation of the transcriptome of any medicinal plant species can be obtained, providing a robust resource for gene discovery and downstream biochemical pathway discovery. When coupled to estimation of expression abundances in specific tissues from a developmental series, biotic stress, abiotic stress, or elicitor challenge, informative coexpression and differential expression estimates on a whole transcriptome level can be obtained to identify candidates for function discovery.


Assuntos
Perfilação da Expressão Gênica/métodos , Genoma de Planta , Genômica/métodos , Plantas Medicinais/química , Plantas Medicinais/genética , Sequência de Bases , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Biblioteca Gênica , Genótipo , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Sensibilidade e Especificidade , Transcriptoma
8.
J Biol Chem ; 287(11): 8163-73, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22241476

RESUMO

Botryococcus braunii race B is a colony-forming, green algae that accumulates triterpene oils in excess of 30% of its dry weight. The composition of the triterpene oils is dominated by dimethylated to tetramethylated forms of botryococcene and squalene. Although unusual mechanisms for the biosynthesis of botryococcene and squalene were recently described, the enzyme(s) responsible for decorating these triterpene scaffolds with methyl substituents were unknown. A transcriptome of B. braunii was screened computationally assuming that the triterpene methyltransferases (TMTs) might resemble the S-adenosyl methionine-dependent enzymes described for methylating the side chain of sterols. Six sterol methyltransferase-like genes were isolated and functionally characterized. Three of these genes when co-expressed in yeast with complementary squalene synthase or botryococcene synthase expression cassettes resulted in the accumulation of mono- and dimethylated forms of both triterpene scaffolds. Surprisingly, TMT-1 and TMT-2 exhibited preference for squalene as the methyl acceptor substrate, whereas TMT-3 showed a striking preference for botryococcene as its methyl acceptor substrate. These in vivo preferences were confirmed with in vitro assays utilizing microsomal preparations from yeast overexpressing the respective genes, which encode for membrane-associated enzymes. Structural examination of the in vivo yeast generated mono- and dimethylated products by NMR identified terminal carbons, C-3 and C-22/C-20, as the atomic acceptor sites for the methyl additions to squalene and botryococcene, respectively. These sites are identical to those previously reported for the triterpenes extracted from the algae. The availability of closely related triterpene methyltransferases exhibiting distinct substrate selectivity and successive catalytic activities provides important tools for investigating the molecular mechanisms responsible for the specificities exhibited by these unique enzymes.


Assuntos
Clorófitas/enzimologia , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Esqualeno/metabolismo , Sequência de Bases , Catálise , Clorófitas/genética , Clonagem Molecular , Teste de Complementação Genética/métodos , Metilação , Metiltransferases/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Transcriptoma/fisiologia
9.
Appl Biochem Biotechnol ; 160(1): 122-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19125226

RESUMO

There are several conditions which might modulate polymerization to produce polymers having normal lattice structure. In the absence of 1 mM MgCl(2) the assembly was reduced by 36% in Capsicum annuum tubulin (CAnm tubulin). There was no significant difference in the final assembly formation in the presence of 5% to 10% glycerol. However, nucleation rate was slow and apparent study state was achieved lately in the presence of 10% glycerol. Taxol at 100 microM concentration increased 23% tubulin assembly. One millimolar CaCl(2), >or=1% dimethyl sulfoxide (DMSO) and physiologically low temperature reduced CAnm tubulin assembly. A value of 0.089 mg/ml was obtained as critical concentration for polymerization. Benomyl significantly reduced the number of cysteine residues accessible to 5,5'-dithiobis-(2-nitrobenzoic acid); there were 4.77 +/- 0.21 and 3.49 +/- 0.35 residues accessible per tubulin dimer in the presence of 50 and 100 microM benomyl respectively.


Assuntos
Capsicum , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/metabolismo , Ácido Ditionitrobenzoico/metabolismo , Indicadores e Reagentes/farmacologia , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Temperatura , Tubulina (Proteína)/química
10.
Appl Microbiol Biotechnol ; 82(3): 513-24, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19099300

RESUMO

Internal fragments of alpha- and beta-tubulin genes were generated using reverse transcription polymerase chain reaction (RT-PCR), and the termini were isolated using 5'- and 3'-rapid amplification of cDNA ends. Phytophthora capsici alpha- and beta-tubulin specific primers were then used to generate full-length cDNA by RT-PCR. The recombinant alpha- and beta-tubulin genes were expressed in Escherichia coli BL21 (DE3), purified under denaturing conditions, and average yields were 3.38-4.5 mg of alpha-tubulin and 2.89-4.0 mg of beta-tubulin, each from 1-l culture. Optimum conditions were obtained for formation of microtubule-like structures. A value of 0.12 mg/ml was obtained as the critical concentration of polymerization of P. capsici tubulin. Benomyl inhibited polymerization with half-maximal inhibition (IC(50)) = 468 +/- 20 microM. Approximately 18.66 +/- 0.13 cysteine residues per tubulin dimer were accessible to 5,5'-dithiobis-(2-nitrobenzoic acid), a quantification reagent of sulfhydryl and 12.43 +/- 0.12 residues were accessible in the presence of 200 microM benomyl. The order of preference for accessibility to cysteines was benomyl > colchicine > GTP > taxol, and cysteine accessibility changes conformed that binding sites of these ligands in tubulin were folding correctly. Fluorescence resonance energy transfer technique was used for high throughput screening of chemical library in search of antimitotic agent. There was significant difference in relative fluorescence by 210-O-2 and 210-O-14 as compared to colchicine.


Assuntos
Proteínas de Algas/química , Clonagem Molecular , Microtúbulos/efeitos dos fármacos , Phytophthora/genética , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/química , Proteínas de Algas/genética , Proteínas de Algas/isolamento & purificação , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Dados de Sequência Molecular , Phytophthora/química , Phytophthora/metabolismo , Ligação Proteica , Dobramento de Proteína , Alinhamento de Sequência , Tubulina (Proteína)/genética , Tubulina (Proteína)/isolamento & purificação , Tubulina (Proteína)/metabolismo
12.
Biochem Biophys Res Commun ; 370(2): 322-6, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18381065

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a Fe(II)-dependent, non-heme oxygenase that converts 4-hydroxyphenylpyruvate to homogentisate. Essential cofactors, such as plastoquinone and tocopherol, are produced by HPPD-dependent anabolic pathways in plants. To isolate a novel hppd using culture-independent method, a cosmid metagenomic library was constructed from soil in Korea. Screening of Escherichia coli metagenomic libraries led to the identification of a positive clone, YS103B, producing dark brown pigment in Luria-Bertani medium supplemented with l-tyrosine. In vitro transposon mutagenesis of YS103B showed that the 1.3kb insert was sufficient to produce the hemolytic brown pigment. Sequence analysis of YS103B disclosed one open reading frame encoding a 41.4kDa protein with the well-conserved prokaryotic oxygenase motif of the HPPD family of enzymes. The HPPD-specific beta-triketone herbicide, sulcotrione, inhibited YS103B pigmentation. The recombinant protein expressed in E. coli generated homogentisic acid. Thus, we present the successful heterologous expression of a previously uncharacterized hppd gene from an uncultured soil bacterium.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/genética , 4-Hidroxifenilpiruvato Dioxigenase/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Microbiologia do Solo , 4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Células Cultivadas , Clonagem Molecular , Cicloexanonas/farmacologia , Escherichia coli/genética , Genoma Bacteriano , Biblioteca Genômica , Herbicidas/farmacologia , Mesilatos/farmacologia , Dados de Sequência Molecular , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de Proteína
13.
FEMS Microbiol Lett ; 282(1): 44-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18355282

RESUMO

To detect cellulases encoded by uncultured microorganisms, we constructed metagenomic libraries from Korean soil DNAs. Screenings of the libraries revealed a clone pCM2 that uses carboxymethyl cellulose (CMC) as a sole carbon source. Further analysis of the insert showed two consecutive ORFs (celM2 and xynM2) encoding proteins of 226 and 662 amino acids, respectively. A multiple sequence analysis with the deduced amino acid sequences of celM2 showed 36% sequence identity with cellulase from the Synechococcus sp., while xynM2 had 59% identity to endo-1,4-beta-xylanase A from Cellulomonas pachnodae. The highest enzymatic CMC hydrolysis was observable at pH 4.0 and 45 degrees C with recombinant CelM2 protein. Although the enzyme CelM2 additionally hydrolyzed avicel and xylan, no substrate hydrolysis was observed on oligosaccharides such as cellobiose, pNP-beta-cellobioside, pNP-beta-glucoside, and pNP-beta-xyloside. These results showed that CelM2 is a novel endo-type cellulase.


Assuntos
Bactérias/enzimologia , Celulase/química , Celulase/genética , Microbiologia do Solo , Sequência de Aminoácidos , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Carboximetilcelulose Sódica/metabolismo , Celulase/isolamento & purificação , Celulase/metabolismo , Biblioteca Genômica , Coreia (Geográfico) , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Especificidade por Substrato
14.
J Microbiol Biotechnol ; 17(6): 905-12, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18050907

RESUMO

A novel beta-glucosidase gene, bglA, was isolated from uncultured soil bacteria and characterized. Using genomic libraries constructed from soil DNA, a gene encoding a protein that hydrolyzes a fluorogenic analog of cellulose, 4-methylumbelliferyl beta-D-cellobioside (MUC), was isolated using a microtiter plate assay. The gene, bglA, was sequenced using a shotgun approach, and expressed in E. coli. The deduced 55-kDa amino acid sequence for bglA showed a 56% identity with the family 1 glycosyl hydrolase Chloroflexus aurantiacus. Bg1A included two conserved family 1 glycosyl hydrolase regions. When using p-nitrophenyl-beta-D-glucoside (pNPG) as the substrate, the maximum activity of the purified beta-glucosidase exhibited at pH 6.5 and 55 degrees C, and was enhanced in the presence of Mn2+. The Km and Vmax values for the purified enzyme with pNPG were 0.16 mM and 19.10 micromol/min, respectively. The purified BglA enzyme hydrolyzed both pNPG and p-nitrophenyl-beta-D-fucoside. The enzyme also exhibited substantial glycosyl hydrolase activities with natural glycosyl substrates, such as sophorose, cellobiose, cellotriose, cellotetraose, and cellopentaose, yet low hydrolytic activities with gentiobiose, salicin, and arbutin. Moreover, Bg1A was able to convert the major ginsenoside Rb1 into the pharmaceutically active minor ginsenoside Rd within 24 h.


Assuntos
DNA/isolamento & purificação , beta-Glucosidase/genética , Sequência de Aminoácidos , Biblioteca Gênica , Ginsenosídeos/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Microbiologia do Solo , Especificidade por Substrato , Temperatura , beta-Glucosidase/química , beta-Glucosidase/metabolismo
15.
J Biol Chem ; 282(43): 31744-54, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17715131

RESUMO

Solavetivone, a potent antifungal phytoalexin, is derived from a vetispirane-type sesquiterpene, premnaspirodiene, by a putative regio- and stereo-specific hydroxylation, followed by a second oxidation to yield the alpha,beta-unsaturated ketone. Mechanistically, these reactions could occur via a single, multifunctional cytochrome P450 or some combination of cytochrome P450s and a dehydrogenase. We report here the characterization of a single cytochrome P450 enzyme, Hyoscyamus muticus premnaspirodiene oxygenase (HPO), that catalyzes these successive reactions at carbon 2 (C-2) of the spirane substrate. HPO also catalyzes the equivalent regio-specific (C-2) hydroxylation of several eremophilane-type (decalin ring system) sesquiterpenes, such as with 5-epi-aristolochene. Moreover, HPO displays interesting comparisons to other sesquiterpene hydroxylases. 5-Epi-aristolochene di-hydroxylase (EAH) differs catalytically from HPO by introducing hydroxyl groups first at C-1, then C-3 of 5-epi-aristolochene. HPO and EAH also differ from one another by 91-amino acid differences, with four of these differences mapping to putative substrate recognition regions 5 and 6. These four positions were mutagenized alone and in various combinations in both HPO and EAH and the mutant enzymes were characterized for changes in substrate selectivity, reaction product specificity, and kinetic properties. These mutations did not alter the regio- or stereo-specificity of either HPO or EAH, but specific combinations of the mutations did improve the catalytic efficiencies 10-15-fold. Molecular models and comparisons between HPO and EAH provide insights into the catalytic properties of these enzymes of specialized metabolism in plants.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases/metabolismo , Sesquiterpenos/metabolismo , Sequência de Aminoácidos , Catálise , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/genética , DNA/genética , DNA/isolamento & purificação , DNA de Plantas/química , Hidroxilação , Hyoscyamus/enzimologia , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sesquiterpenos/química , Especificidade por Substrato
16.
Biotechnol Bioeng ; 97(1): 170-81, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17013941

RESUMO

Terpenes are structurally diverse compounds that are of interest because of their biological activities and industrial value. These compounds consist of chirally rich hydrocarbon backbones derived from terpene synthases, which are subsequently decorated with hydroxyl substituents catalyzed by terpene hydroxylases. Availability of these compounds is, however, limited by intractable synthetic means and because they are produced in low amounts and as complex mixtures by natural sources. We engineered yeast for sesquiterpene accumulation by introducing genetic modifications that enable the yeast to accumulate high levels of the key intermediate farnesyl diphosphate (FPP). Co-expression of terpene synthase genes diverted the enlarged FPP pool to greater than 80 mg/L of sesquiterpene. Efficient coupling of terpene production with hydroxylation was also demonstrated by coordinate expression of terpene hydroxylase activity, yielding 50 mg/L each of hydrocarbon and hydroxylated products. These yeast now provide a convenient format for investigating catalytic coupling between terpene synthases and hydroxylases, as well as a platform for the industrial production of high value, single-entity and stereochemically unique terpenes.


Assuntos
Alquil e Aril Transferases/metabolismo , Melhoramento Genético/métodos , Fosfatos de Poli-Isoprenil/metabolismo , Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...