Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 4: e2095, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27330858

RESUMO

Background. A loss of mucosal tolerance to the resident microbiome has been postulated in the aetiopathogenesis of spondyloarthritis, thus the purpose of these studies was to investigate microbial communities that colonise the oral cavity of patients with axial spondyloarthritis (AxSpA) and to compare these with microbial profiles of a matched healthy population. Methods. Thirty-nine participants, 17 patients with AxSpA and 22 age and gender-matched disease-free controls were recruited to the study. For patients with AxSpA, disease activity was assessed using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). All participants underwent a detailed dental examination to assess oral health, including the presence of periodontal disease assessed using probing pocket depth (PPD). Plaque samples were obtained and their bacterial populations were profiled using Ion Torrent sequencing of the V6 region of the 16S rRNA gene. Results.Patients with AxSpA had active disease (BASDAI 4.1 ± 2.1 [mean ± SD]), and a significantly greater prevalence of periodontitis (PPD ≥ 4 mm at ≥4 sites) than controls. Bacterial communities did not differ between the two groups with multiple metrics of α and ß diversity considered. Analysis of operational taxonomic units (OTUs) and higher levels of taxonomic assignment did not provide strong evidence of any single taxa associated with AxSpA in the subgingival plaque. Discussion. Although 16S rRNA gene sequencing did not identify specific bacterial profiles associated with AxSpA, there remains the potential for the microbiota to exert functional and metabolic influences in the oral cavity which could be involved in the pathogenesis of AxSpA.

2.
Antimicrob Agents Chemother ; 58(4): 2089-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24449771

RESUMO

Persister cells represent a multidrug-tolerant (MDT), physiologically distinct subpopulation of bacteria. The ability of these organisms to survive lethal antibiotic doses raises concern over their potential role in chronic disease, such as recurrent urinary tract infection (RUTI). Persistence is believed to be conveyed through global metabolic dormancy, which yields organisms unresponsive to external stimuli. However, recent studies have contested this stance. Here, various antibiotics that target different cellular processes were used to dissect the activity of transcription, translation, and peptidoglycan turnover in persister cells. Differential susceptibility patterns were found in type I and type II persisters, and responses differed between Staphylococcus saprophyticus and Escherichia coli uropathogens. Further, SOS-deficient strains were sensitized to ciprofloxacin, suggesting DNA gyrase activity in persisters and indicating the importance of active DNA repair systems for ciprofloxacin tolerance. These results indicate that global dormancy per se cannot sufficiently account for antibiotic tolerance. Rather, the activity of individual cellular processes dictates multidrug tolerance in an antibiotic-specific fashion. Furthermore, the susceptibility patterns of persisters depended on their mechanisms of onset, with subinhibitory antibiotic pretreatments selectively shutting down cognate targets and increasing the persister fraction against the same agent. Interestingly, antibiotics targeting transcription and translation enhanced persistence against multiple agents indirectly related to these processes. Conducting these assays with uropathogenic E. coli isolated from RUTI patients revealed an enriched persister fraction compared to organisms cleared with standard antibiotic therapy. This finding suggests that persister traits are either selected for during prolonged antibiotic treatment or initially contribute to therapy failure.


Assuntos
Antibacterianos/farmacologia , Ampicilina/farmacologia , Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus/efeitos dos fármacos
3.
Curr Rheumatol Rep ; 15(3): 314, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23378145

RESUMO

There is a growing understanding of the mechanisms by which the influence of the microbiota projects beyond sites of primary mucosal occupation to other human body systems. Bacteria present in the intestinal tract exert a profound effect on the host immune system, both locally and at distant sites. The oral cavity has its own characteristic microbiota, which concentrates in periodontal tissues and is in close association with a permeable epithelium. In this review we examine evidence which supports a role for the microbiome in the aetiology of rheumatic disease. We also discuss how changes in the composition of the microbiota, particularly within the gastrointestinal tract, may be affected by genetics, diet, and use of antimicrobial agents. Evidence is presented to support the theory that an altered microbiota is a factor in the initiation and perpetuation of inflammatory diseases, including rheumatoid arthritis (RA), spondyloarthritis (SpA), and inflammatory bowel disease (IBD). Mechanisms through which the microbiota may be involved in the pathogenesis of these diseases include altered epithelial and mucosal permeability, loss of immune tolerance to components of the indigenous microbiota, and trafficking of both activated immune cells and antigenic material to the joints. The potential to manipulate the microbiome, by application of probiotics and faecal microbial transplant (FMT), is now being investigated. Both approaches are in their infancy with regard to management of rheumatic disease but their potential is worthy of consideration, given the need for novel therapeutic approaches, and the emerging recognition of the importance of microbial interactions with human hosts.


Assuntos
Metagenoma/fisiologia , Doenças Reumáticas/microbiologia , Antibacterianos/farmacologia , Dieta , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Humanos , Tolerância Imunológica , Metagenoma/efeitos dos fármacos , Boca/microbiologia , Obesidade , Probióticos/uso terapêutico , Doenças Reumáticas/tratamento farmacológico , Doenças Reumáticas/genética , Doenças Reumáticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...