Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(11): 1506-1515, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37782587

RESUMO

Silicon parts can contain micrometer-sized vertical cracks that are challenging to detect. Inspection using high-frequency focused ultrasound has shown promise for detecting defects of this size and geometry. However, implementing focused ultrasound to inspect anisotropic media can prove challenging, given the directional dependence of wave propagation and subsequent focusing behavior. In this work, back surface-breaking defects at various orientations within silicon wafers (0°, 15°, and 45° relative to the [010] crystallographic axis) are experimentally inspected in an immersion tank setup. Using 100 MHz unfocused and focused shear waves, the impact of medium anisotropy on focusing and defect detection is evaluated. The scattering amplitude and defect detection sensitivity results demonstrate orientation-dependent patterns that strongly rely on the use of focused transducers. The defects along the 45° orientation reveal two-lobe scattering patterns with maximum amplitudes less than half that of the defects in the 0° orientation, which in contrast show a one-lobe scattering pattern. The experimental results are further explored using finite element (FE) modeling and ray tracing to visualize the impact of focusing on wave propagation within the silicon. Ray tracing results show that the focused beam profiles for the 45° and 0° orientations form a butterfly wing and elliptical focusing profile, respectively, which correspond directly to experimentally found scattering patterns from defects. Additionally, the FE scattering results from unfocused transducers reveal single lobe scattering for both 0° and 45° orientations, proving the varying scattering patterns to be driven by the anisotropic focusing behavior.

2.
J Acoust Soc Am ; 150(4): 2409, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717444

RESUMO

Metal additive manufacturing is a fabrication method that forms a part by fusing layers of powder to one another. An energy source, such as a laser, is commonly used to heat the metal powder sufficiently to cause a molten pool to form, which is known as the melt pool. The melt pool can exist in the conduction or the keyhole mode where the material begins to rapidly evaporate. The interaction between the laser and the material is physically complex and difficult to predict or measure. In this article, high-speed X-ray imaging was combined with immersion ultrasound to obtain synchronized measurements of stationary laser-generated melt pools. Furthermore, two-dimensional and three-dimensional finite-element simulations were conducted to help explain the ultrasonic response in the experiments. In particular, the time-of-flight and amplitude in pulse-echo configuration were observed to have a linear relationship to the depth of the melt pool. These results are promising for the use of ultrasound to characterize the melt pool behavior and for finite-element simulations to aid in interpretation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...