Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Chem Phys ; 144(20): 204121, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27250293

RESUMO

Radical halogen oxide species play important roles within atmospheric processes, specifically those responsible for the removal of O3. To facilitate future investigations on this family of compounds, RCCSD(T)/aug-cc-pVQZ-level electronic structure calculations were employed to generate individual-molecule optimized geometries, as well as to determine the global minimum energy structure for the BrO⋅H2O complex. This information facilitated the generation of several one-dimensional potential energy surface (PES) scans for the BrO⋅H2O complex. Scans were performed for both the ground state and the first excited state; this inclusion is due to a low-lying first electronic excited-state energy. These rigid-geometry PES scans were used both to generate a novel analytic interaction potential by modifying the existing Thole-type model used for water and to the fitted potential function. This interaction potential features anisotropic atomic polarizabilities facilitating appropriate modeling of the physics regarding the unpaired electron residing within the p-orbitals of the oxygen atom of the bromine oxide radical. The intention of this work is to facilitate future molecular dynamics simulations involving the interaction between the BrO radical and water clusters as a first step in devising possible novel chemistries taking place at the water interface of clouds within the atmosphere.

3.
J Comput Chem ; 36(31): 2350-9, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26505259

RESUMO

DAMQT-2.1.0 is a new version of DAMQT package which includes topographical analysis of molecular electron density (MED) and molecular electrostatic potential (MESP), such as mapping of critical points (CPs), creating molecular graphs, and atomic basins. Mapping of CPs is assisted with algorithmic determination of Euler characteristic in order to provide a necessary condition for locating all possible CPs. Apart from the mapping of CPs and determination of molecular graphs, the construction of MESP-based atomic basin is a new and exclusive feature introduced in DAMQT-2.1.0. The GUI in DAMQT provides a user-friendly interface to run the code and visualize the final outputs. MPI libraries have been implemented for all the tasks to develop the parallel version of the software. Almost linear scaling of computational time is achieved with the increasing number of processors while performing various aspects of topography. A brief discussion of molecular graph and atomic basin is provided in the current article highlighting their chemical importance. Appropriate example sets have been presented for demonstrating the functions and efficiency of the code.


Assuntos
Elétrons , Software , Eletricidade Estática
4.
Chem Rev ; 114(24): 12132-73, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25341561
5.
J Mol Model ; 20(4): 2198, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24652502

RESUMO

Hydrolysis of phosphodiester bond in different substrates containing alkyl or aryl substituents, in the presence of ß-cyclodextrin (ß-CD) as a catalyst, has been investigated employing the density functional theory. It has been shown that the mechanism of ß-CD catalyzed phosphodiester hydrolysis in modeled substrates viz. [p-nitrophenyl][(2,2) methylpropan] phosphodiester (G1); [p-nitrophenyl] [(2,2)methyl butan] phosphodiester (G2); (p-nitrophenyl) (2-methyl pentan) phosphodiester (G3); (p-nitrophenyl) (phenyl) phosphodiester (G4); (p-nitrophenyl) (m-tert-butyl phenyl) phosphodiester (G5) and (p-nitrophenyl) (p-nitrophenyl) phosphodiester (G6) involves net phosphoryl transfer from p-nitrophenyl to the catalyst. The hydrolysis occurs in a single-step D(N)A(N) mechanism wherein the ß-CD acts as a competitive general base. The nucleophile addition is facilitated via face-to-face hydrogen-bonded interactions from the secondary hydroxyl groups attached to the top rim of ß-CD. The insights for cleavage of phosphodiester along the dissociative pathway have been derived using the molecular electrostatic potential studies as a tool. The activation barrier of substrates containing alkyl group (G2 and G3) are found to be lower than those containing aryl groups (G4, G5 and G6).


Assuntos
Organofosfatos/química , beta-Ciclodextrinas/química , Catálise , Ligação de Hidrogênio , Hidrólise , Modelos Químicos , Modelos Moleculares
7.
J Phys Chem A ; 117(36): 8591-8, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23621643

RESUMO

Both experimental and theoretical investigations on weakly bonded small N2O clusters have been a subject of interest for the past decade. The current article presents high-level ab initio calculations for (N2O)n clusters for n = 4-6 employing second-order Møller-Plesset (MP2) theory and coupled cluster singles and doubles with perturbative triple (CCSD(T)) theory using Dunning's correlation-consistent basis sets. The electrostatics-guided cluster building code developed in our laboratory is applied for the generation of initial cluster geometries, followed by geometry optimization at MP2/aug-cc-pVTZ level of theory. Calculations of single point energy at CCSD(T)/aug-cc-pVTZ and vibrational frequency at the MP2/aug-cc-pVTZ level of theory are facilitated by the fragment-based molecular tailoring approach (MTA). A comparison of the results is done with those obtained by employing dispersion-corrected density functional B2PLYPD with aug-cc-pVTZ basis set. The geometrical parameters and vibrational spectra obtained from these ab initio methods are found to be in good agreement with those derived from recent experimental findings of Oliaee et al. [J. Chem. Phys. 2011, 134, 074310] and Rezaei et al. [J. Chem. Phys. 2012, 136, 224308].

8.
J Chem Phys ; 138(10): 104101, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23514459

RESUMO

High level ab initio investigations on molecular clusters are generally restricted to those of small size essentially due to the nonlinear scaling of corresponding computational cost. Molecular tailoring approach (MTA) is a fragmentation-based method, which offers an economical and efficient route for studying larger clusters. However, due to its approximate nature, the MTA-energies carry some errors vis-à-vis their full calculation counterparts. These errors in the MTA-energies are reduced by grafting the correction at a lower basis set (e.g., 6-31+G(d)) onto a higher basis set (e.g., aug-cc-pvdz or aug-cc-pvtz) calculation at MP2 level of theory. Further, better estimates of energies are obtained by making use of many-body interaction analysis. For this purpose, R-goodness (Rg) parameters for the three- and four-body interactions in a fragmentation scheme are proposed. The procedure employing grafting and many-body analysis has been tested out on molecular clusters of water, benzene, acetylene and carbon dioxide. It is found that for the fragmentation scheme having higher three- and four-body Rg-values, the errors in MTA-grafted energies are reduced typically to ~0.2 mH at MP2 level calculation. Coupled with the advantage in terms of computational resources and CPU time, the present method opens a possibility of accurate treatment of large molecular clusters.

9.
J Chem Phys ; 137(7): 074116, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22920112

RESUMO

An efficient and rapid algorithm for topography mapping of scalar fields, molecular electron density (MED) and molecular electrostatic potential (MESP) is presented. The highlight of the work is the use of fast function evaluation by Deformed-atoms-in-molecules (DAM) method. The DAM method provides very rapid as well as sufficiently accurate function and gradient evaluation. For mapping the topography of large systems, the molecular tailoring approach (MTA) is invoked. This new code is tested out for mapping the MED and MESP critical points (CP's) of small systems. It is further applied to large molecular clusters viz. (H(2)O)(25), (C(6)H(6))(8) and also to a unit cell of valine crystal at MP2/6-31+G(d) level of theory. The completeness of the topography is checked by extensive search as well as applying the Poincaré-Hopf relation. The results obtained show that the DAM method in combination with MTA provides a rapid and efficient route for mapping the topography of large molecular systems.

10.
Phys Chem Chem Phys ; 14(21): 7718-23, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22402433

RESUMO

Clusters of CO(2) are a subject of detailed experimental as well as theoretical investigations due to their interesting applications. In the present article, CO(2) clusters (n = 6 to 13) are studied at the MP2 level of theory. The clusters are grown using a cluster building algorithm developed by our group and the larger ones are optimized at the MP2/aug-cc-pVDZ level by employing a Molecular Tailoring Approach (MTA). Vibrational spectra of these clusters are also calculated at this level of theory within MTA. The computed vibrational frequencies for an asymmetric C-O stretch generally exhibit a blue shift with increasing cluster size. This observation is in agreement with the experimental results. MTA-single point energies for each cluster size at the MP2/aug-cc-pVTZ level are also calculated for estimating the interaction energies at the complete basis set limit.

11.
J Phys Chem A ; 115(45): 12769-79, 2011 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21932861

RESUMO

The pioneering works due to Bader and co-workers have generated widespread interest in the study of the topography of molecular scalar fields, the first step of which is the identification and characterization of the corresponding critical points (CPs). The topography of a molecular system becomes successively richer in going from the bare nuclear potential (BNP) to the molecular electrostatic potential (MESP) through the molecular electron density (MED). The present work clearly demonstrates, through the study of some π-conjugated test molecules as well as molecular clusters, that the CPs could be economically located by following this path within ab initio level theory. Further, the topography mapping of large molecules, especially at a higher level of theory, is known to be a demanding task. However, it is rendered possible by following the above sequential mapping assisted by a divide-and-conquer-type method termed as the molecular tailoring approach (MTA). This is demonstrated with the topography mapping of ß-carotene and benzene nonamer at MP2 and a (H(2)O)(32) cluster at the HF level of theory, which are rather challenging problems with contemporary off-the-shelf computer hardware.

12.
J Chem Phys ; 134(8): 084111, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21361531

RESUMO

Nano-sized clusters of various materials are recent experimental targets, since they exhibit size-dependent physico-chemical properties. A vast amount of literature is available on the study of molecular clusters but general methods for systematic evolution of their growth are rather scarce. The present work reports a molecular cluster building algorithm based on the electrostatic guidelines, followed by ab initio investigations, enabled by the application of molecular tailoring approach. Applications of the algorithm for generating geometries and interaction energies of large molecular clusters of zinc sulfide, benzene, and water are presented.

13.
J Chem Phys ; 132(9): 094102, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-20210384

RESUMO

For the accurate ab initio treatment of large molecular systems, linear scaling methods (LSMs) have been devised and successfully applied to covalently bonded systems as well as to those involving weak intra/intermolecular bonds. Very few attempts to apply LSM to highly conjugated molecules, especially to two-dimensional systems, have so far been reported in the literature. The present article examines the applicability of a LSM, viz., molecular tailoring approach (MTA), to pi-conjugated systems within density functional theory. A few test cases within second order Møller-Plesset framework are also reported. MTA is applied to some one-dimensional pi-conjugated molecules, for which the difference between MTA energy and actual energy is found out to be less than 1 mhartree and also reduced computation time as well as hardware requirements. The method is also extended to some small/medium-sized two-dimensional pi-conjugated molecules by developing a systematic algorithm for tailoring such systems. However, for such systems, although the energies are in error by a few millihartrees, gradients are found to match reasonably well their actual counterparts. Hence, geometry optimization of these systems within MTA framework is attempted. The geometries thus generated are found to be in good agreement with their actual counterparts, with the actual single point energies matching within 1 mhartree, along with reduced computational effort. These results point toward the potential applicability of MTA to large two- and three-dimensional pi-conjugated systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...