Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(12)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31212890

RESUMO

The process of coagulation and precipitation affect the fate and mobility of antimony (Sb) species in drinking water. Moreover, the solubility and physico-chemical properties of the precipitates may be affected by the media chemistry. Accordingly, the present study aimed to investigate the removal of Sb(III, V) species by ferric chloride coagulation under various water chemistry influences with a particular focus on the role of the properties of the precipitates. The results indicated that the amount of Sb(III) removed increased with increasing solution pH, showing the insignificant effects of the hydrodynamic diameter (HDD) and ζ-potential of the precipitates. However, no Sb(V) removal occurred at alkaline pH values, while a highly negative ζ-potential and the complete dissolution of precipitates were observed in the aqueous solution. The solution pH was also useful in determining the dominant coagulation mechanisms, such as co-precipitation and adsorption. The Fe solubility substantially affects the Sb removal at a certain pH range, while the HDD of the precipitates plays an insignificant role in Sb removal. The presence of divalent cations brings the ζ-potential of the precipitates close to point of zero charge (pzc), thus enhancing the Sb(V) removal at alkaline pH conditions. Pronounced adverse effects of humic acid were observed on Sb removal, ζ-potential and HDD of the precipitates. In general, this study may provide critical information to a wide group of researchers dealing with environmental protection from heavy metal pollution.


Assuntos
Antimônio/química , Poluentes Químicos da Água/química , Água/química , Adsorção , Cátions/química , Fenômenos Químicos , Cloretos/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Metais/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-30970550

RESUMO

The widespread use of copper oxide nanoparticles (CuO NPs) and surfactants in various consumer products makes it likely that they coexist in aqueous environments, making it important to study the effects of surfactants on the fate and transport behavior of CuO NPs. The present study aims to investigate the influence of anionic sodium lauryl sulfate (SLS) and nonionic nonylphenol ethoxylate (NPEO, Tergitol NP-9), on CuO NPs adsorption, aggregation, and removal from water by the coagulation process. The result of the sorption study indicates that both surfactants could be adsorbed on the surface of CuO NPs, and that SLS remarkably decreases the ζ potential as well as the hydrodynamic diameter (HDD) of CuO as compared to NP-9. The kinetic aggregation study showed that both SLS and NP-9 reduced the HDD of CuO NPs and retarded the settling rates at surfactant concentrations above 0.015% (w:v) over a 24 h-period. Moreover, enhanced aggregation of CuO NPs was observed in two environmental waters as compared to pure water, which could be related to their high ionic strength. The addition of surfactants in natural waters has been shown to reduce the aggregation and sedimentation of CuO; however, the reductive effect of SLS was more pronounced than that of NP-9. Finally, the coagulation results showed that the removal efficiencies of CuO, Cu2+, and the surfactant in all tested waters at optimum ferric chloride dosage reached around 98, 95, and 85%, respectively. Furthermore, the coagulation mechanism revealed that the combination of charge neutralization and adsorptive micellar flocculation (AMF) might be involved in the removal of both pollutants. The results of the present study provide new insight into the environmental behavior of coexisting NPs and surfactants in wastewater treatment processes.


Assuntos
Cobre/química , Recuperação e Remediação Ambiental/métodos , Nanopartículas Metálicas/química , Tensoativos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Floculação , Concentração Osmolar
3.
Artigo em Inglês | MEDLINE | ID: mdl-30934698

RESUMO

The presence of natural organic matter (NOM) in drinking water sources can stabilize toxic antimony (Sb) species, thus enhancing their mobility and causing adverse effects on human health. Therefore, the present study aims to quantitatively explore the complexation of hydrophobic/hydrophilic NOM, i.e., humic acid (HA), salicylic acid (SA), and L-cysteine (L-cys), with Sb in water. In addition, the removal of Sb(III, V) species and total organic carbon (TOC) was evaluated with ferric chloride (FC) as a coagulant. The results showed a stronger binding affinity of hydrophobic HA as compared to hydrophilic NOM. The optimum FC dose required for Sb(V) removal was found to be higher than that for Sb(III), due to the higher complexation ability of hydrophobic NOM with antimonate than antimonite. TOC removal was found to be higher in hydrophobic ligands than hydrophilic ligands. The high concentration of hydrophobic molecules significantly suppresses the Sb adsorption onto Fe precipitates. An isotherm study suggested a stronger adsorption capacity for the hydrophobic ligand than the hydrophilic ligand. The binding of Sb to NOM in the presence of active Fe sites was significantly reduced, likely due to the adsorption of contaminants onto precipitated Fe. The results of flocs characteristics revealed that mechanisms such as oxidation, complexation, charge neutralization, and adsorption may be involved in the removal of Sb species from water. This study may provide new insights into the complexation behavior of Sb in NOM-laden water as well as the optimization of the coagulant dose during the water treatment process.


Assuntos
Antimônio/química , Floculação , Purificação da Água/métodos , Adsorção , Cloretos/química , Cisteína/química , Compostos Férricos/química , Substâncias Húmicas/análise , Oxirredução , Ácido Salicílico/química
4.
Molecules ; 24(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022881

RESUMO

The co-occurrence of arsenic (As) and organic ligands in water bodies has raised environmental concerns due to their toxicity and adverse effects on human health. The present study aims to elucidate the influences of hydrophobic/hydrophilic organic ligands, such as humic acid (HA) and salicylic acid (SA), on the interactive behavior of As species in water. Moreover, the competitive removal behaviors of As(III, V) species and total organic carbon (TOC) were systematically investigated by coagulation-flocculation-sedimentation (C/F/S) under various aqueous matrices. The results showed the stronger binding affinity of As(V) than As(III) species, with a higher complexation ability of hydrophobic ligands than hydrophilic. The media containing hydrophilic ligands require smaller ferric chloride (FC) doses to achieve the higher As(III, V) removal, while the optimum FC dose required for As(III) removal was found to be higher than that for As(V). Moreover, hydrophobic ligands showed higher TOC removal than hydrophilic ligands. The pronounced adverse effect of a higher concentration of hydrophobic ligands on the removal efficiencies of As(V) and TOC was observed. The adsorption of As(V) on Fe precipitates was better fitted with the Langmuir model but the Freundlich isotherm was more suitable for As(III) in the presence of hydrophilic SA. Moreover, TOC removal was substantially decreased in the As(V) system as compared to the As(III) system due to the dissolution of Fe precipitates at higher As(V) concentrations. The results of FC composite flocs demonstrated that the combined effect of oxidation, charge neutralization and adsorption played an important role in the removal of both toxicants during the C/F/S process. In summary, the findings of the present study provide insights into the fate, mobility and competitive removal behavior of As(III, V) species and organic ligands in the water treatment process.


Assuntos
Arsênio/toxicidade , Poluentes Químicos da Água/toxicidade , Purificação da Água , Água/química , Floculação , Humanos , Ligantes , Compostos Orgânicos/química , Oxirredução
5.
Nanomaterials (Basel) ; 9(3)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901850

RESUMO

The use of zinc oxide nanoparticles (ZnO NPs) and polybrominated diphenyl ethers (PBDPEs) in different products and applications leads to the likelihood of their co-occurrence in the aquatic system, making it important to study the effect of PBDPEs on the fate and transport of ZnO NPs. In this study, we determine the influence of PBDPEs (BDPE-47 and BDPE-209) on the colloidal stability and physicochemical properties of ZnO NPs in different aqueous matrices. The results indicated the shift in ζ potential of ZnO NP from positive to negative in the presence of both PBDPEs in all tested waters; however, the effect on the NPs surface potential was specific to each water considered. The lower concentration of the PBDPEs (e.g., 0.5 mg/L) significantly reduced the ζ potential and hydrodynamic diameter (HDD) of ZnO NP, even in the presence of high content of dissolved organic matter (DOM) in both freshwater and industrial wastewater. Moreover, both BDPE-47 and BDPE-209 impede the agglomeration of ZnO NP in simple and natural media, even in the presence of monovalent and polyvalent cations. However, the effect of BDPE-47 on the ζ potential, HDD, and agglomeration of ZnO NP was more pronounced than that of BDPE-209 in all tested waters. The results of Fourier transform infrared (FT-IR) and X-ray Photon Spectroscopy (XPS) further confirm the adsorption of PBDPEs onto ZnO NP surface via aromatic ether groups and Br elements. The findings of this study will facilitate a better understanding of the interaction behavior between the ZnO NPs and PBDPEs, which can reduce the exposure risk of aquatic organisms to both pollutants.

6.
J Environ Manage ; 238: 251-256, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852401

RESUMO

In this study, an attempt has been made to reduce the sludge using novel homogenizer coupled solar photo Fenton (HPF) process. At an optimum pH of 3 and Fe2+ to H2O2 dosage of 1:6, PF process yielded 63.7% solids reduction at a time interval of 45 min. Coupling of homogenizers with photo Fenton (PF) process effectively enhanced treatment efficiency. When homogenizer (specific energy - 1150.694 kJ/kg TS) was coupled with PF, a sharp increase in solid reduction 73.5% and decrease in reaction time (20 min) were observed. Cost benefit analysis revealed the efficiency of HPF process and achieved a net cost of 15.59 USD whereas PF achieved a negative net cost of -82.69 USD. Based on the above study it can be concluded that coupling of homogenizers with PF not only increased its efficiency but also make it field applicable.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Estudos de Viabilidade , Peróxido de Hidrogênio , Ferro , Oxirredução
7.
Molecules ; 24(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841649

RESUMO

The increased use of engineered nanoparticles (ENPs), such as copper oxide nanoparticles (CuO NPs), in commercial products and applications raises concern regarding their possible release into freshwater sources. Therefore, their removal from water is important to eliminate adverse environmental and human health effects. In this study, the effects of pH and natural organic matter (NOM), i.e., humic acid (HA) and salicylic acid (SA) on the removal of CuO NPs by coagulation/flocculation/sedimentation (C/F/S) were evaluated. The results indicated that pH significantly affects the coagulation efficiency, where 10⁻60% CuO NPs removal was achieved under extreme acidic/alkaline conditions. However, at neutral pH, removal of up to 90% was observed with a lower ferric chloride (FC) dosage (0.2 mM). The coagulation efficiency and mechanism were strongly affected by the type of Fe species present in the aqueous phase, which is mainly controlled by pH. Higher concentrations of both HA and SA decrease the CuO NPs agglomeration rate, and thereby improve the colloidal stability due to the NOM molecules adsorbed onto the NPs surface. The presence of hydrophobic HA needs a higher FC dosage of 0.5⁻0.8 mM than a dosage of hydrophilic SA of 0.25⁻0.35 mM, to obtain a similar CuO coagulation efficiency. Moreover, higher removals of dissolved organic carbon (DOC) and UV254 were observed more in hydrophobic NOM than in hydrophilic. The results of the Fourier transform infrared (FT-IR) analysis of FC composite flocs confirm that the charge neutralization and enmeshment of coagulant might be a possible removal mechanism. The findings of the current study may provide critical information in the prediction of the fate, mobility, and removal of CuO NPs during C/F/S in water treatment.


Assuntos
Cobre/química , Nanopartículas Metálicas/química , Água/química , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Salicilatos/química , Solubilidade , Análise Espectral , Propriedades de Superfície , Termogravimetria
8.
J Environ Manage ; 223: 644-651, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975891

RESUMO

A novel approach to explore the impact of calcium specific chelant - Ethylene glycol tetra acetic acid (EGTA) on deflocculation followed by biomass disintegration using microwave (MW) was investigated. In the first phase of the study, the EGTA dosage of 0.012 g/g suspended solids (SS) was found to be optimal for disassociating the biomass. Subsequent disintegration of biomass in microwave (EGTA-MW) yielded a biomass lysis and solids reduction of about 39.7% and 30.5%. EGTA-MW disintegration reduces the amount of specific energy required to disintegrate the biomass from 18,900 kJ/kg TS to 13,500 kJ/kg TS, when compared to control. The impact of EGTA-MW disintegration on anaerobic digestion was also evident from its methane yield (235.3 mL/g VS) which was 36.2% higher than control. An economic assessment of this study provides a net profit of 8.48 €/ton in EGTA-MW and highly endorsed for biomass disintegration.


Assuntos
Ácido Acético , Etilenoglicol , Micro-Ondas , Purificação da Água , Anaerobiose , Biomassa , Metano , Esgotos
9.
J Environ Manage ; 206: 999-1006, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029350

RESUMO

In this study, recalcitrant rich retting-pond wastewater was treated primarily by anaerobic treatment and subsequently treated with a solar photofenton process to remove phenol and organics. The anaerobic treatment was carried out in a granulated laboratory scale hybrid upflow anaerobic sludge blanket reactor (HUASBR) with a working volume of 5.9 L. It was operated at different hydraulic retention times (HRT) from 40 to 20 h over a period of 140 days. The optimum HRT of the anaerobic reactor was found to be 30 h, with corresponding chemical oxygen demand (COD) and phenol removal of 60% and 47%, respectively. Primary anaerobically treated wastewater was subjected to secondary solar photofenton treatment which was carried out at pH 3.5. Response surface methodology (RSM) was used to design and optimize the performance of the solar photofenton process. Regression quadratic model describing COD removal efficiency of the solar photofenton process was developed and confirmed by analysis of variance (ANOVA). Optimum parameters of the solar photofenton process were found to be: 4 g/L of fenton as catalysts, 25 mL of hydrogen peroxide, and 30 min of reaction time. After the primary anaerobic treatment, solar photofenton oxidation process removed 94% and 96.58% of COD and phenol, respectively. Integration of anaerobic and solar photofenton treatment resulted in 97.5% and 98.4% removal of COD and phenol, respectively, from retting-pond wastewater.


Assuntos
Fenol , Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Lagoas , Esgotos
10.
Bioresour Technol ; 254: 203-213, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29413924

RESUMO

In this study, microwave irradiation has been employed to disintegrate the sludge biomass profitably by deagglomerating the sludge using a mechanical device, ultrasonicator. The outcomes of the study revealed that a specific energy input of 3.5 kJ/kg TS was found to be optimum for deagglomeration with limited cell lysis. A higher suspended solids (SS) reduction and biomass lysis efficiency of about 22.5% and 33.2% was achieved through ultrasonic assisted microwave disintegration (UMWD) when compared to microwave disintegration - MWD (15% and 20.9%). The results of biochemical methane potential (BMP) test were used to estimate biodegradability of samples. Among the samples subjected to BMP, UMWD showed better amenability towards anaerobic digestion with higher methane production potential of 0.3 L/g COD representing enhanced liquefaction potential of disaggregated sludge biomass. Economic analysis of the proposed method of sludge biomass pretreatment showed a net profit of 2.67 USD/Ton respectively.


Assuntos
Biomassa , Esgotos , Ultrassom , Anaerobiose , Metano , Micro-Ondas , Eliminação de Resíduos Líquidos
11.
Bioresour Technol ; 255: 220-228, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29427873

RESUMO

The present study concerns the liquefying potential of an unusual source of lignocellulosic biomass (Marsilea spp., water clover, an aquatic fern) during combinative pretreatment. The focus was on how the pretreatment affects the biodegradability, methane production, and profitability of thermochemical dispersion disintegration (TCDD) based on liquefaction and soluble lignin. The TCDD process was effective at 12,000 rpm and 11 min under the optimized thermochemical conditions (80 °C and pH 11). The results from biodegradability tests imply that 30% liquefaction was sufficient to achieve enhanced biodegradability of about 0.280 g-COD/g-COD. When biodegradability was >30% inhibition was observed (0.267 and 0.264 g-COD/g-COD at 35-40% liquefaction) due to higher soluble lignin release (4.53-4.95 g/L). Scalable studies revealed that achievement of 30% liquefaction was beneficial in terms of the energy and cost benefit ratios (0.956 and 1.02), when compared to other choices.


Assuntos
Biomassa , Lignina , Marsileaceae , Custos e Análise de Custo , Metano
12.
Bioresour Technol ; 244(Pt 1): 688-697, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28818797

RESUMO

This study aimed to improve the biomethane potential of dairy waste activated sludge (WAS) by H2O2-acidic pH induced microwave disintegration (HAMW-D) pretreatment approach. The results of HAMW-D compared with the microwave disintegration (MW-D) alone for energy and economic factors. In the two phase disintegration process, the H2O2 concentration of about 0.5mg/g SS under acid pH of 5 was found to be optimum for effective dissociation of Extracellular Polymeric Substances (EPS) matrix. A higher liquefaction of about 46.6% was achieved in HAMW-D when compared to that of MW-D (30%). It subsequently improved the methane yield of about 250mL/g VS in HAMW-D, which was 9.6% higher than MW-D. A net profit of about 49€/ton was achieved for HAMW-D, therefore it is highly recommended for WAS pretreatment.


Assuntos
Peróxido de Hidrogênio , Metano , Eliminação de Resíduos Líquidos , Micro-Ondas , Esgotos
13.
Chemosphere ; 175: 66-75, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28211336

RESUMO

In this study, an attempt was made to disintegrate waste activated sludge (WAS) in a cost-effective way. During the first phase of this study, effective break down of extracellular polymeric substance (EPS) was performed by deflocculating WAS with 0.1 g/g SS of MgSO4. Deflocculation rate was 92% with discharge rate of extractable EPS at 185 mg/L. In the second phase, effective bacterial cell disintegration was obtained at 36 h post treatment. Maximum solubilization of deflocculated sludge was approximately 21%, which was higher than that of flocculated sludge (14.2%) or the control (4.5%). Biodegradability studies were assessed through kinetic analysis by non-linear regression modeling. Results revealed that the deflocculated sludge had higher methane generation (at about 235.8 mL/gVs) compared to flocculated sludge (at 146.1 mL/gVs) or the control (at 34.8 mL/gVs). Cost assessment of the present work revealed that the net yield for each ton of the deflocculated sludge was about 32.99 USD.


Assuntos
Biodegradação Ambiental , Esgotos/microbiologia , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Economia , Floculação , Cinética , Sulfato de Magnésio/química , Metano/análise
14.
Bioresour Technol ; 232: 235-246, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28236758

RESUMO

Physiochemical disintegration of waste activated biosolids (WAB) through thermochemical (TC) pretreatment requires high energy and cost for efficient energy generation. Therefore in the present study, an attempt has been made to enhance the biodegrdability and to minimize the operational cost of TC pretreatment by combining it with ozonation. A higher solubilization of about 30.4% was achieved at lesser energy input of about 141.02kJ/kgTS and a ozone dosage of about 0.0012mgO3/mgSS through this combined thermo chemo ozone (TCO3) pretreatment. The methane production potential (0.32gCOD/gCOD) of TCO3 pretreatment was comparatively higher than the (0.19gCOD/gCOD) TC pretreatment. The energetic analysis and economic assessment of the proposed method of pretreatment can possibly reduces the energy requirement of TC pretreatment with a positive net profit of about 35.49$/ton of biosolids.


Assuntos
Biodegradação Ambiental , Biocombustíveis , Técnicas de Química Sintética , Ozônio/química , Biocombustíveis/análise , Biocombustíveis/economia , Análise da Demanda Biológica de Oxigênio , Técnicas de Química Sintética/economia , Técnicas de Química Sintética/métodos , Análise Custo-Benefício , Metano/análise , Esgotos/análise , Gerenciamento de Resíduos/economia , Gerenciamento de Resíduos/métodos
15.
Bioresour Technol ; 228: 156-163, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28064132

RESUMO

In this study, an effort has been made to reduce the energy cost of liquefaction by coupling a mechanical disperser with a chemical (sodium tripolyphosphate). In terms of the cost and specific energy demand of liquefaction, the algal biomass disintegrated at 12,000rpm for 30min, and an STPP dosage of about 0.04g/gCOD was chosen as an optimal parameter. Chemo disperser liquefaction (CDL) was found to be energetically and economically sustainable in terms of liquefaction, methane production, and net profit (15%, 0.14gCOD/gCOD, and 4 USD/Ton of algal biomass) and preferable to disperser liquefaction (DL) (10%, 0.11 gCOD/gCOD, and -475 USD/Ton of algal biomass).


Assuntos
Biomassa , Biotecnologia/métodos , Metano/biossíntese , Ácidos/química , Anaerobiose , Análise de Variância , Biodegradação Ambiental , Biopolímeros/análise , Biotecnologia/economia , Custos e Análise de Custo , Hidrólise , Modelos Lineares , Dinâmica não Linear , Compostos Orgânicos/análise , Alga Marinha/metabolismo
16.
Environ Sci Pollut Res Int ; 24(1): 813-826, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27757748

RESUMO

In this study, surfactant dioctyl sodium sulphosuccinate (DOSS)-mediated immobilized bacterial pretreatment of waste activated sludge (WAS) was experimentally proved to be an efficient and economically feasible process for enhancing the biodegradability of WAS. The maximal floc disruption with negligible cell cleavage was achieved at surfactant dosage of 0.009 g/g SS. Results of the outcome of bacterial pretreatment of sludge biomass revealed that chemical oxygen demand (COD) solubilization for deflocculated (EPS removed-bacterially pretreated) sludge was 20 %, which was higher than that of flocculated (14 %) or control (5 %). The pretreatment was swift in deflocculated sludge with a rate constant of about 0.064 h-1. Biochemical methane potential (BMP) assay resulted in significant methane yield at 0.24 gCOD/gCOD for deflocculated sludge. Economic assessment of the proposed method showed a net profit of about 57.39 USD/ton of sludge.


Assuntos
Biocombustíveis/análise , Ácido Dioctil Sulfossuccínico/química , Esgotos/microbiologia , Tensoativos/química , Purificação da Água/métodos , Anaerobiose , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Biomassa , Floculação , Hidrólise , Metano/análise , Modelos Teóricos
17.
Bioresour Technol ; 221: 1-8, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27631887

RESUMO

Mechanical disintegration of sludge through ultrasonication demands high energy and cost. Therefore, in the present study, a comprehensive investigation was performed to analyze the potential of a novel method, fenton mediated sonic disintegration (FSD). In FSD process, extracellular polymeric substance (EPS) of sludge was first removed via fenton treatment. It was subsequently disintegrated via ultrasonication. Energetic assessment and economic analysis were then performed using net energy and cost gain (spent) as key factor to evaluate the practical viability of the FSD process. FSD was found to be superior over sonic disintegration based on its higher sludge solubilization (34.4% vs. 23.2%) and methane production potential (0.3gCOD/gCOD vs. 0.2gCOD/gCOD). Both energy analysis and cost assessment of the present study revealed that FSD could reduce the energy demand of ultrasonication considerably with a positive net profit of about 44.93USD/Ton of sludge.


Assuntos
Biodegradação Ambiental , Biomassa , Esgotos/química , Sonicação/métodos , Análise da Demanda Biológica de Oxigênio , Ultrassom
18.
Bioresour Technol ; 219: 479-486, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27521784

RESUMO

The objective of this study was to determine the impact of solubilization during thermo-chemo-sonic pretreatment of waste activated sludge (WAS) on anaerobic biodegradability and cost for biogas production. The results revealed that it was possible to achieve 40-50% of solubilization of WAS when ultrasonic energy input was doubled (11,520-27,000kJ/kgTS). The cost to achieve 30-35% of solubilization of WAS was calculated to be 0.22-0.24USD/L, which was relatively lower than the cost of 0.53-0.8USD/L when 40-50% of solubilisation of WAS was achieved. There was no significant difference in biodegradability (0.60-0.64gCOD/gCOD) for samples with solubilization efficiency of 35-50%. Comparing energetic balance and economic assessment of samples with different solubilization percentages, the results showed that samples with 30-35% of solubilization had lower net cost (7.98-2.33USD/Ton of sludge) and negative energy balance compared to samples with other percentages of solubilization.


Assuntos
Biodegradação Ambiental/efeitos da radiação , Biocombustíveis , Esgotos/química , Sonicação , Solubilidade/efeitos da radiação
19.
J Microbiol Biotechnol ; 26(11): 1951-1964, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27470275

RESUMO

1,4-Dioxane-degrading bacterial consortia were enriched from forest soil (FS) and activated sludge (AS) using a defined medium containing 1,4-dioxane as the sole carbon source. These two enrichments cultures appeared to have inducible tetrahydrofuran/dioxane and propane degradation enzymes. According to qPCR results on the 16S rRNA and soluble di-iron monooxygenase genes, the relative abundances of 1,4-dioxane-degrading bacteria to total bacteria in FS and AS were 29.4% and 57.8%, respectively. For FS, the cell growth yields (Y), maximum specific degradation rate (Vmax), and half-saturation concentration (Km) were 0.58 mg-protein/mg-dioxane, 0.037 mg-dioxane/mg-protein∙h, and 93.9 mg/l, respectively. For AS, Y, Vmax, and Km were 0.34 mg-protein/mg-dioxane, 0.078 mg-dioxane/mg-protein∙h, and 181.3 mg/l, respectively. These kinetics data of FS and AS were similar to previously reported values. Based on bacterial community analysis on 16S rRNA gene sequences of the two enrichment cultures, the FS consortium was identified to contain 38.3% of Mycobacterium and 10.6% of Afipia, similar to previously reported literature. Meanwhile, 49.5% of the AS consortium belonged to the candidate division TM7, which has never been reported to be involved in 1,4-dioxane biodegradation. However, recent studies suggested that TM7 bacteria were associated with degradation of non-biodegradable and hazardous materials. Therefore, our results showed that previously unknown 1,4-dioxane-degrading bacteria might play an important role in enriched AS. Although the metabolic capability and ecophysiological significance of the predominant TM7 bacteria in AS enrichment culture remain unclear, our data reveal hidden characteristics of the TM7 phylum and provide a perspective for studying this previously uncultured phylotype.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Dioxanos/metabolismo , Consórcios Microbianos , Esgotos/microbiologia , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Dioxanos/química , Cinética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Filogenia , Microbiologia do Solo
20.
Environ Sci Pollut Res Int ; 23(13): 13467-79, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27026550

RESUMO

The aim of this study was to increase the sludge disintegration and reduce the cost of microwave (MW) pretreatment. Thermodynamic analysis of MW hydrolysis revealed the best fit with a first-order kinetic model at a specific energy of 18,600 kJ/kg total solids (TS). Combining H2O2 with MW resulted in a significant increment in solubilization from 30 to 50 % at 18,600 kJ/kg TS. The pH of H2O2-assisted MW-pretreated sludge (MW + H2O2) was in the alkaline range (pH 9-10), and it made the sludge unfavorable for subsequent anaerobic digestion and inhibits methane production. In order to nullify the alkaline effect caused by the MW + H2O2 combination, the addition of acid was considered for pH adjustment. H2O2-assisted MW-pretreated sludge in acidic conditions (MW + H2O2 + acid) showed a maximum methane production of 323 mL/g volatile solids (VS) than others during anaerobic biodegradability. A cost analysis of this study reveals that MW + H2O2 + acid was the most economical method with a net profit of 59.90 €/t of sludge.


Assuntos
Peróxido de Hidrogênio/química , Micro-Ondas , Esgotos , Anaerobiose , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Hidrólise , Metano/metabolismo , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...