Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(21): 34677-34687, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859218

RESUMO

This paper introduces the characteristics and efficiency of post-treatment methods for enhancing the timing resolution of ceramic Ce:GAGG scintillators. The thermal annealing and surface treatments were included to analyze their impact on time-resolved photoluminescence (TRPL) and thermoluminescence (TL) characteristics. Optical properties were improved by suppressing nonradiative recombination due to the reduced surface defects, while heat-treatment removes traps as confirmed by TL measurements. TRPL decay characteristics revealed that samples treated with mechanical polishing followed by heat treatment exhibited the best scintillation performance, with a slow component of 272.3 ns. These findings will aid in developing techniques for improving the luminescence of other inorganic scintillators.

2.
Med Phys ; 50(10): 6118-6129, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37469146

RESUMO

BACKGROUND: Positron probes can accurately localize malignant tumors by directly detecting positrons emitted from positron-emitting radiopharmaceuticals that accumulate in malignant tumors. In the conventional method for direct positron detection, multilayer scintillator detection and pulse shape discrimination techniques are used. However, some γ-rays cannot be distinguished by conventional methods. Accordingly, these γ-rays are misidentified as positrons, which may increase the error rate of positron detection. PURPOSE: To analyze the energy distribution in each scintillator of the multilayer scintillator detector to distinguish true positrons and γ-rays and to improve the positron detection algorithm by discriminating true and false positrons. METHODS: We used Autoencoder, an unsupervised deep learning architecture, to obtain the energy distribution data in each scintillator of the multilayer scintillator detector. The Autoencoder was trained to separate the combined signals generated from the multilayer scintillator detector into two signals of each scintillator. An energy window was then applied to the energy distribution obtained using the trained Autoencoder to distinguish true positrons from false positrons. Finally, the performance of the proposed method and conventional positron detection algorithm was evaluated in terms of the sensitivity and error rate for positron detection. RESULTS: The energy distribution map obtained using the trained Autoencoder was proven to be similar to that of the simulated results. Furthermore, the proposed method demonstrated a 29.79% (+0.42%p) increase in positron detection sensitivity compared to the conventional method, both having an equal error rate of 0.48%. However, when both methods were set to have the same sensitivity of 1.83%, the proposed method had an error rate that was 25.0% (-0.16%p) lower than that of the conventional method. CONCLUSIONS: We proposed and developed an Autoencoder-based positron detection algorithm that can discriminate between true and false positrons with a smaller error rate than conventional methods. We verified that the proposed method could increase the positron detection sensitivity while maintaining a low error rate compared to the conventional method. If the proposed algorithm is implemented in handheld positron detection probes or cameras, diseases such as cancers can be more accurately localized in a shorter time compared with using traditional methods.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Tomografia por Emissão de Pósitrons/métodos , Partículas beta , Algoritmos
3.
PLoS One ; 18(3): e0281262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881579

RESUMO

We investigated the correlation between the surface finish and luminescence properties of chemically polished cerium-doped single-crystal Gd3Al2Ga3O12 scintillators (Ce:GAGG), from the crystallographic perspective. The intrinsic defects in the crystals were identified via photoluminescence spectroscopy followed by scanning electron microscopy and X-ray diffraction to analyze their surface morphologies. Finally, the samples were individually wrapped with an enhanced specular reflector (ESR), coupled with a photomultiplier tube, placed inside a dark box, connected to a digitizer, and irradiated with a 137Cs radioactive source to evaluate the relative light (signal) output and energy resolution of each sample. The as-cut (rough) Ce:GAGG single-crystal samples, that were chemically polished with phosphoric acid at 190°C in air for 60 min, demonstrated a 33.1% increase in signal amplitude (light output to photosensor) and 2.4% (absolute value) improvement in energy resolution, which were comparable to those obtained for the mechanically polished sample. For these samples, the surface roughness was found to be ~430 nm, which was approximately half of that of the mechanically polished sample. The chemical polishing method used in this study is a cost-effective and straightforward technique to improve structural imperfections and can facilitate the treatment of inorganic scintillators with complex shapes and/or on a large scale.


Assuntos
Cério , Radioisótopos de Césio , Cristalografia , Luminescência
4.
Artigo em Inglês | MEDLINE | ID: mdl-36315528

RESUMO

High element density and strict constraints of the element's size have significantly limited the design and fabrication of 2-D ultrasonic arrays, especially fully sampled 2-D arrays. Recently, 3-D printing technology has been one of the most rapidly developing fields. Along with the great progress of 3-D printing technology, complex and detailed 3-D structures have become readily available with a short iteration cycle, which allows us to reduce the complexity of routing and helps to ameliorate assembly problems in 2-D ultrasound array fabrication. In this work, we designed and fabricated 2-D ultrasound arrays for an array of applications with a pitch-shifting interposer, which allowed us to fit different array designs with the same circuit design and significantly reduce the requirements in routing and connection for 2-D array fabrication at frequencies from 4 to 10 MHz. Results demonstrated that this design would make 2-D arrays more available and affordable.


Assuntos
Transdutores , Ultrassom , Desenho de Equipamento , Ultrassonografia/métodos
5.
Materials (Basel) ; 15(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35207948

RESUMO

We compared thermal stability, open-circuit voltage, short-circuit current, and fill factor values of single-crystal Cadmium telluride (CdTe) grown using the vertical Bridgman (VB) technique and doped with group V elements (phosphorus and arsenic), and group Ⅰ element (sodium), followed by an annealing process. The sodium-doped CdTe maintained a hole density of 1016 cm-3 or higher; after annealing for a long time, this decreased to 1015 cm-3 or less. The arsenic-doped CdTe maintained a hole density of approximately 1016 cm-3 even after the annealing process; however its bulk minority carrier lifetime decreased by approximately 10%. The phosphorus-doped CdTe maintained its properties after the annealing process, ultimately achieving a hole density of ~1016 cm-3 and a minority carrier lifetime of ~40 ns. The characteristics of a single-crystal solar cell were evaluated using a solar cell device that contained single-crystal CdTe with various dopants. The sodium-doped sample exhibited poor interfacial properties, and its performance decreased rapidly during annealing. The samples doped with group V elements exhibited stable characteristics even during long-term annealing. We concluded, therefore, that group V elements dopants are more suitable for CdTe single-crystal-based solar cell applications involving thermal stress conditions, such as space missions or extreme fabrication temperature environments.

6.
Opt Express ; 29(2): 751-760, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726305

RESUMO

Surface modification of ceramic Ce-doped Gd3Al2Ga3O12 (Ce:GAGG) was performed by exposing small samples to anhydrous phosphoric acid (H3PO4) under different conditions (temperature and duration) to investigate the effects of chemical polishing treatment. When coupled to a photomultiplier tube (PMT) and used as a radiation detector, chemical treatment for 3 min at 190 °C improved the light (signal) output by 24.8% and energy resolution by 2.5% (percentage point), respectively. This can be attributed to a reduction in surface roughness that enhanced optical properties. Thus, chemical polishing could be a low-cost alternative to mechanical polishing especially for small or complex shaped ceramic scintillators.

7.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557045

RESUMO

We propose an integrated front-end data acquisition circuit for a hybrid ultrasound (US)-gamma probe. The proposed circuit consists of three main parts: (1) a preamplifier for the gamma probe, (2) a preprocessing analog circuit for the US, and (3) a digitally controlled analog switch. By exploiting the long idle time of the US system, an analog switch can be used to acquire data of both systems using a single output channel simultaneously. On the nuclear medicine (NM) gamma probe side, energy resolutions of 18.4% and 17.5% were acquired with the standalone system and with the proposed switching circuit, respectively, when irradiated with a Co-57 radiation source. Similarly, signal-to-noise ratios of 14.89 and 13.12 dB were achieved when US echo signals were acquired with the standalone system and with the proposed switching circuit, respectively. Lastly, a combined US-gamma probe was used to scan a glass target and a sealed radiation source placed in a water tank. The results confirmed that, by using a hybrid US-gamma probe system, it is possible to distinguish between the two objects and acquire structural information (ultrasound) alongside molecular information (gamma radiation source).

8.
Phys Med Biol ; 65(5): 055003, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31874462

RESUMO

Depth-of-interaction (DOI) encoding can contribute to improving spatial resolution uniformity and sensitivity in positron-emission-tomography (PET) scanners. In addition, time-of-flight (TOF) PET scanners with DOI encoding have received considerable interest because of their potential for improving the spatial resolution, sensitivity, and image quality of the overall system. In this study, a new DOI detector configuration utilizing scintillators' emission wavelength is proposed, and experimental results on the energy, timing, and DOI performance of the detector are provided. The DOI information from the proposed phoswich-type detector can be acquired at the detector level without complex signal processing by utilizing a single optical filter with customized optical properties. For this, we used either a short pass filter (SPF) or a long pass filter (LPF) that allows light photons of a specific wavelength to pass. The two-layered phoswich detector was configured with two scintillators with different photon-emission spectra. In this study, we used Ce:GAGG (3 mm × 3 mm × 10 mm) and LYSO:Ce (3 mm × 3 mm × 10 mm) as the top and bottom layer scintillators, respectively. A digital silicon photomultiplier (dSiPM) was used as the photosensor and for data acquisition. The phoswich detector was placed in the center of two dSiPM pixels, where one of the dSiPM pixels was covered with the optical filter, and the light guide was placed on the other pixel. The detector was tested for energy, timing, and DOI encoding performance. When an SPF was used, the energy resolutions of 16.2% and 11.8% were achieved for the Ce:GAGG (top layer) and LYSO:Ce (bottom layer) respectively without correcting for saturation effect. With a small (3 mm × 3 mm × 5 mm) LYSO crystal as the reference detector, CRTs (coincidence-resolving times) of 338 ps and 244 ps were recorded for the top and bottom layers respectively. The detector configuration also provides an excellent DOI-separation figure-of-merit (FoM) value of 1.9. In the case of LPF, the energy resolutions of 12.0% and 12.9% were achieved for the Ce:GAGG (top layer) and LYSO:Ce (bottom layer), respectively. CRTs (coincidence resolving times) of 314 ps and 263 ps were recorded for the top and bottom layers, respectively. The DOI-separation FoM value of 1.5 was achieved in this setup. Results show that the proposed method can provide excellent discrete DOI positioning accuracy without compromising the timing performance of the detector.


Assuntos
Fótons , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos
9.
Technol Health Care ; 27(S1): 133-142, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31045533

RESUMO

BACKGROUND: Compared to laser, light-emitting diodes - non-coherent and divergent light sources requires that the developed optical system support steering and focusing of light on the desired target when acquiring information regarding human tissues. OBJECTIVE: A new optical system with an ultrawide angle was designed to cover large areas of the eye, including facial areas near the eye, in order to overcome the limited field of view of optical systems used for ophthalmology and dermatology applications. METHODS: To achieve a compact and handheld optical system for ophthalmology and dermatology applications, a contrast auto-focus (AF) method must be used, and the weight reduction of the AF group is considered during the design process to satisfy the effective focal length (EFL), back focal length (BFL), and front focal length (FFL) in the proposed optical system using Gaussian-bracket method. RESULTS: The designed optical system can focus from infinity to a magnification of -0.19 times, representing a distance of 114.359 mm from the first surface of the optical system to the object. The AF lens moving distance from infinity to the minimum distance is approximately 4.984 mm. The full width at half maximum (FWHM) values of the red, green, and blue light-emitting diodes were 16 mm, 35 mm, and 22 mm, respectively. CONCLUSIONS: We have designed an ultrawide-angle optical system for compact optical systems that are suitable for high-performance ophthalmology and dermatology applications.


Assuntos
Dermatologia , Desenho de Equipamento , Oftalmologia , Dispositivos Ópticos , Humanos , Luz
10.
Sensors (Basel) ; 18(10)2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282961

RESUMO

A new multiwavelength visible-range-supported opto⁻ultrasound instrument using a light-emitting diode and ultrasound transducer was developed in order to produce multiwavelength visible light with minimized color aberration errors, and detect ultrasound signals emitted from the target. In the instrument, the developed optical systems can provide multiwavelength optical transmission with low optical aberration within 10-cm ranges that are reasonably flat in the modulation transfer function at spatial frequencies of 20 and 40 lp/mm, except at the end of the diagonal edge of the samples. To assess the instrument capability, we performed pulse⁻echo responses with Thunnus obesus eye samples. Focused red, green, blue and white light rays from an integrated red, green and blue LED source were produced, and echo signal amplitudes of 33.53, 34.92, 38.74 and 82.54 mV, respectively, were detected from the Thunnus obesus eye samples by a 10-MHz focused ultrasound transducer. The center frequencies of the echo signal when producing red, green, blue and white LED light in the instrument were 9.02, 9.05, 9.21 and 8.81 MHz, respectively. From these tests, we verify that this instrument can combine red, green and blue LED light to cover different wavelengths in the visible-light range and detect reasonable echo amplitudes from the samples.

11.
Sensors (Basel) ; 17(4)2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28375165

RESUMO

A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dBm input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dBm at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dBm at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dBm input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dBm input power was applied, the second, third, fourth, and fifth harmonic distortions of the HVPA with the power MOSFET linearizer (-41.54, -41.80, -48.86, and -46.27 dB, respectively) were also lower than that of the HVPA without the power MOSFET linearizer (-25.85, -43.56, -49.04, and -49.24 dB, respectively). Therefore, we conclude that the power MOSFET linearizer could reduce gain deviation of the HVPA, thus reducing the echo signal harmonic distortions generated by the high-frequency ultrasonic transducers in pulse-echo instrumentation.

12.
Sensors (Basel) ; 17(3)2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28273794

RESUMO

In optoacoustic (photoacoustic) systems, different echo signal intensities such as amplitudes, center frequencies, and bandwidths need to be compensated by utilizing variable gain or time-gain compensation amplifiers. However, such electronic components can increase system complexities and signal noise levels. In this paper, we introduce a double-Gauss lens to generate a large field of view with uniform light intensity due to the low chromatic aberrations of the lens, thus obtaining uniform echo signal intensities across the field of view of the optoacoustic system. In order to validate the uniformity of the echo signal intensities in the system, an in-house transducer was placed at various positions above a tissue sample and echo signals were measured and compared with each other. The custom designed double-Gauss lens demonstrated negligible light intensity variation (±1.5%) across the illumination field of view (~2 cm diameter). When the transducer was used to measure echo signal from an eye of a bigeye tuna within a range of ±1 cm, the peak-to-peak amplitude, center frequency, and their -6 dB bandwidth variations were less than 2 mV, 1 MHz, and 6%, respectively. The custom designed double-Gauss lens can provide uniform light beam across a wide area while generating insignificant echo signal variations, and thus can lower the burden of the receiving electronics or signal processing in the optoacoustic system.

13.
Med Phys ; 44(2): 470-478, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28032904

RESUMO

PURPOSE: In the past decade, demands for organ specific (target oriented) single-photon emission computed tomography (SPECT) is increasing, and several groups have conducted studies on developing clinical dedicated SPECT with pinhole collimator to improve the spatial resolution. However, acceptance angle of the collimator cannot be adjusted to fit the different ROIs of target objects because the shape of pinhole could not be changed, and the magnifying factor cannot be maximized as the collimator-to-detector distance is fixed. Furthermore, those dedicated pinhole SPECTs are typically made for a single purpose and therefore possess a drawback in that it cannot be utilized for any other purpose. In this study, we propose a novel SPECT system using variable pinhole collimator (VP SPECT) whose parameters are flexible. METHODS: The proposed variable pinhole collimator is modeled on conventional pinhole by piling several tungsten layers of different apertures. Depending on the combination of the holes in each layer, a variety of hole diameters and acceptance angles of the pinhole can be made. In addition, VP SPECT system allows attaching the collimator to the object as close as possible to maximize the sensitivity and adjust the distance of the pinhole from the scintillation detector to optimize the system resolution for each rotation angle, automatically. For quantitative measurement, we compared the sensitivity and spatial resolution of VP SPECT with those of conventional pinhole SPECT. To determine the possibility of the clinical and preclinical use of proposed system, a digital mouse whole-body (MOBY) phantom is used for simulating the live mouse model. RESULTS: The result of simulation using ultra-micro hot spot phantom shows that the sensitivity of the proposed VP SPECT system is about 297% of that of the conventional system. While hot rods of diameter 0.6 mm can be distinguished in the image with the proposed VP SPECT system, 1.2-mm hot rods are barely discernible in the conventional pinhole SPECT image. According to the result of MOBY phantom simulation, heart walls separated by 3 mm were not distinguished in conventional pinhole SPECT images, but were clearly discerned in VP SPECT images. CONCLUSIONS: In this study, we designed a novel pinhole collimator for SPECT and presented preliminary results of target oriented imaging with a simulation study. Currently, we are pursuing strategies to realize the proposed system, with the goal to apply the technology into a high-sensitivity and high-resolution preclinical SPECT. Should VP SPECT be applied to the clinical setting, we anticipate a high-sensitivity, high-resolution system for applications such as heart dedicated SPECT or related fields.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Animais , Simulação por Computador , Desenho de Equipamento , Estudos de Viabilidade , Coração/diagnóstico por imagem , Camundongos , Modelos Anatômicos , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tungstênio
14.
Nucl Med Mol Imaging ; 50(2): 112-22, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27275359

RESUMO

Positron emission tomography (PET) is a molecular imaging modality that provides information at the molecular level. This system is composed of radiation detectors to detect incoming coincident annihilation gamma photons emitted from the radiopharmaceutical injected into a patient's body and uses these data to reconstruct images. A major trend in PET instrumentation is the development of time-of-flight positron emission tomography (ToF-PET). In ToF-PET, the time information (the instant the radiation is detected) is incorporated for image reconstruction. Therefore, precise and accurate timing recording is crucial in ToF-PET. ToF-PET leads to better localization of the annihilation event and thus results in overall improvement in the signal-to-noise ratio (SNR) of the reconstructed image. Several factors affect the timing performance of ToF-PET. In this article, the background, early research and recent advances in ToF-PET instrumentation are presented. Emphasis is placed on the various types of scintillators, photodetectors and electronic circuitry for use in ToF-PET, and their impact on timing resolution is discussed.

15.
Phys Med Biol ; 60(7): 2785-802, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25768002

RESUMO

Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from âˆ¼243 ps FWHM to âˆ¼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Eletricidade , Desenho de Equipamento , Humanos , Luz , Espalhamento de Radiação , Contagem de Cintilação , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
16.
Med Phys ; 41(12): 122501, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25471979

RESUMO

PURPOSE: Side readout of scintillation light from crystal elements in positron emission tomography (PET) is an alternative to conventional end-readout configurations, with the benefit of being able to provide accurate depth-of-interaction (DOI) information and good energy resolution while achieving excellent timing resolution required for time-of-flight PET. This paper explores different readout geometries of scintillation crystal elements with the goal of achieving a detector that simultaneously achieves excellent timing resolution, energy resolution, spatial resolution, and photon sensitivity. METHODS: The performance of discrete LYSO scintillation elements of different lengths read out from the end/side with digital silicon photomultipliers (dSiPMs) has been assessed. RESULTS: Compared to 3 × 3 × 20 mm(3) LYSO crystals read out from their ends with a coincidence resolving time (CRT) of 162 ± 6 ps FWHM and saturated energy spectra, a side-readout configuration achieved an excellent CRT of 144 ± 2 ps FWHM after correcting for timing skews within the dSiPM and an energy resolution of 11.8% ± 0.2% without requiring energy saturation correction. Using a maximum likelihood estimation method on individual dSiPM pixel response that corresponds to different 511 keV photon interaction positions, the DOI resolution of this 3 × 3 × 20 mm(3) crystal side-readout configuration was computed to be 0.8 mm FWHM with negligible artifacts at the crystal ends. On the other hand, with smaller 3 × 3 × 5 mm(3) LYSO crystals that can also be tiled/stacked to provide DOI information, a timing resolution of 134 ± 6 ps was attained but produced highly saturated energy spectra. CONCLUSIONS: The energy, timing, and DOI resolution information extracted from the side of long scintillation crystal elements coupled to dSiPM have been acquired for the first time. The authors conclude in this proof of concept study that such detector configuration has the potential to enable outstanding detector performance in terms of timing, energy, and DOI resolution.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Fenômenos Biofísicos , Cristalização , Humanos , Interpretação de Imagem Assistida por Computador , Fotometria/instrumentação , Fotometria/estatística & dados numéricos , Fótons , Tomografia por Emissão de Pósitrons/estatística & dados numéricos , Contagem de Cintilação/instrumentação , Contagem de Cintilação/estatística & dados numéricos , Silício
17.
Phys Med Biol ; 58(4): 1207-20, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23369872

RESUMO

Precise timing resolution is crucial for applications requiring photon time-of-flight (ToF) information such as ToF positron emission tomography (PET). Silicon photomultipliers (SiPM) for PET, with their high output capacitance, are known to require custom preamplifiers to optimize timing performance. In this paper, we describe simple alternative front-end electronics based on a commercial low-noise RF preamplifier and methods that have been implemented to achieve excellent timing resolution. Two radiation detectors with L(Y)SO scintillators coupled to Hamamatsu SiPMs (MPPC S10362-33-050C) and front-end electronics based on an RF amplifier (MAR-3SM+), typically used for wireless applications that require minimal additional circuitry, have been fabricated. These detectors were used to detect annihilation photons from a Ge-68 source and the output signals were subsequently digitized by a high speed oscilloscope for offline processing. A coincident resolving time (CRT) of 147 ± 3 ps FWHM and 186 ± 3 ps FWHM with 3 × 3 × 5 mm(3) and with 3 × 3 × 20 mm(3) LYSO crystal elements were measured, respectively. With smaller 2 × 2 × 3 mm(3) LSO crystals, a CRT of 125 ± 2 ps FWHM was achieved with slight improvement to 121 ± 3 ps at a lower temperature (15° C). Finally, with the 20 mm length crystals, a degradation of timing resolution was observed for annihilation photon interactions that occur close to the photosensor compared to shallow depth-of-interaction (DOI). We conclude that commercial RF amplifiers optimized for noise, besides their ease of use, can produce excellent timing resolution comparable to best reported values acquired with custom readout electronics. On the other hand, as timing performance degrades with increasing photon DOI, a head-on detector configuration will produce better CRT than a side-irradiated setup for longer crystals.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Contagem de Cintilação/métodos , Silício/química , Algoritmos , Cristalização , Eletrônica , Desenho de Equipamento , Oscilometria/métodos , Fótons , Ondas de Rádio , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...