Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934034

RESUMO

Mechanical property characterization of micro-scale material systems, such as free-standing films or small diameter wires (<20 µm), often requires expensive, specialized test systems. Conventional tensile test systems are usually designed for millimeter scale specimens with the force sensing capability of >1N while microdevice-based testers are intended for micro-/nano-scale specimens operating within a much smaller force range of <10 mN. This disparity leaves a technology gap in reliable and cost-effective characterization methods for specimens at the intermediate scale. In this research, we introduce the cost-effective and all-in-one tensile testing system with a built-in force sensor, self-aligning mechanisms, and loading frames. Owing to the advantages of 3D printing technologies, the ranges of force measurement (0.001-1 N) and displacement (up to tens of millimeters) of our 3D printed tensile tester can be readily tailored to suit specific material dimension and types. We have conducted a finite element simulation to identify the potential sources of the measurement error during tensile testing and addressed the dominant errors by simply modifying the dimension/design of the loading frames. As a proof-of-concept demonstration, we have characterized fine copper (Cu) wires with 10-25 µm diameters by the 3D printed tensile tester and confirmed that the measured mechanical properties match with the known values of bulk Cu. Our work shows that the proposed 3D printed tensile testing system offers a cost-efficient and easily accessible testing method for accurate mechanical characterization of specimens with cross-sectional dimensions of the order of tens of micrometers.

2.
ACS Omega ; 7(26): 22317-22325, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811924

RESUMO

There have been tremendous improvements in the field of Si electrode materials, either by nanoscale or composite routes, and though silicon-containing carbon electrode materials have begun to penetrate the marketplace, the commercial capacities achieved by these cells still fall short of the promise of high capacity Si electrodes. Enabling a cheaper feedstock of Si in the bulk form would make this technology more accessible, though there are many challenges that must be overcome. Whereas other methods utilize nanomaterials and composites to overcome volume expansion and pulverization of a Si electrode, this study explores a thermal route to enable the use of carbon-free bulk Si. To accomplish this, a modified Swagelok cell has been constructed to accommodate high temperatures, corrosive molten salt electrolytes, and a molten lithium electrode to study lithiation of a bulk Si wafer at 250 °C. Scanning electron microscopy, X-ray diffraction, and microcomputed tomography were used to examine morphological and structural changes within the Si upon lithiation and delithiation. It was discovered that semiordered Li x Si phases were formed upon lithiation in molten LiTFSI electrolyte at 250 °C, and the higher temperature does not completely mitigate pulverization of the bulk Si electrode.

3.
Microsyst Nanoeng ; 7: 9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567726

RESUMO

Exploiting nonlinear characteristics in micro/nanosystems has been a subject of increasing interest in the last decade. Among others, vigorous intermodal coupling through internal resonance (IR) has drawn much attention because it can suggest new strategies to steer energy within a micro/nanomechanical resonator. However, a challenge in utilizing IR in practical applications is imposing the required frequency commensurability between vibrational modes of a nonlinear micro/nanoresonator. Here, we experimentally and analytically investigate the 1:2 and 2:1 IR in a clamped-clamped beam resonator to provide insights into the detailed mechanism of IR. It is demonstrated that the intermodal coupling between the second and third flexural modes in an asymmetric structure (e.g., nonprismatic beam) provides an optimal condition to easily implement a strong IR with high energy transfer to the internally resonated mode. In this case, the quadratic coupling between these flexural modes, originating from the stretching effect, is the dominant nonlinear mechanism over other types of geometric nonlinearity. The design strategies proposed in this paper can be integrated into a typical micro/nanoelectromechanical system (M/NEMS) via a simple modification of the geometric parameters of resonators, and thus, we expect this study to stimulate further research and boost paradigm-shifting applications exploring the various benefits of IR in micro/nanosystems.

4.
Sci Rep ; 11(1): 10182, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986400

RESUMO

Non-linear effects of the Navier-Stokes equations disappear under the Stokes regime of Newtonian fluid flows disallowing a flow rectification behavior. Here we show that passive flow rectification of Newtonian fluids is obtainable under the Stokes regime of both compressible and incompressible flows by introducing nonlinearity into the otherwise linear Stokes equations. Asymmetric flow resistances arise in shallow nozzle/diffuser microchannels with deformable ceiling, in which the fluid flow is governed by a non-linear coupled fluid-solid mechanics equation. The proposed model captures the unequal deflection profile of the deformable ceiling depending on the flow direction under the identical applied pressure, permitting a larger flow rate in the nozzle configuration. Ultra-low aspect ratio microchannels sealed by a flexible membrane have been fabricated to demonstrate passive flow rectification for low-Reynolds-number flows (0.001 < Re < 10) of common Newtonian fluids such as water, methanol, and isopropyl alcohol. The proposed rectification mechanism is also extended to compressible flows, leading to the first demonstration of rectifying equilibrium gas flows under the Stokes flow regime. While the maximum rectification ratio experimentally obtained in this work is limited to 1.41, a higher value up to 1.76 can be achieved by optimizing the width profile of the asymmetric microchannels.

5.
Nanomaterials (Basel) ; 10(3)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182770

RESUMO

Numerous semiconductor-based hybrid nanostructures have been studied for improved photodegradation performance resulting from their broadband optical response and enhanced charge separation/transport characteristics. However, these hybrid structures often involve elements that are rare or toxic. Here, we present the synthesis and material characterization of hybrid nanostructures consisting of zinc oxide (ZnO) nanowires (NWs) and silicon nanocrystals (Si-NCs), both abundant and environmentally benign, and evaluate them for photodegradation performance under various illumination conditions. When incorporating Si-NCs into the vertically-aligned ZnO NWs immobilized on substrates, the resulting photocatalysts exhibited a narrowed band gap, i.e., more responsive to visible light, and enhanced charge separation at the interface, i.e., more reactive species produced for degradation. Consequently, the hybrid Si-NCs/ZnO-NWs displayed a superior photodegradability for methylene blue under UV and white light in comparison to the pristine ZnO NWs. Based on the optical measurements, we hypothesize the band structures of Si-NCs/ZnO-NWs and the potential mechanism for the improved photodegradability.

6.
Environ Int ; 132: 105105, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31437644

RESUMO

Increasing concentrations of anthropogenic antibiotics and their metabolites in aqueous environments has caused growing concerns over the proliferation of antibiotic resistance and potential adverse impacts to agro-environmental quality and human health. Photocatalysis using novel engineered nanomaterials such as ZnO nanowires may be promising for removing antibiotics from waters. However, much remains to be learned about efficiency and mechanism for photocatalytic degradation of antibiotics by ZnO nanowires. This study systematically investigated photodegradation of cephalexin using ZnO nanowires under simulated sunlight. The degradation efficiency of cephalexin was substantially increased in the presence of ZnO nanowires especially at circumneutral and alkaline condition (solution pH of 7.2-9.2). The photodegradation followed the first-order kinetics with degradation rate constants (k) ranging between 1.19 × 10-1 and 2.52 × 10-1 min-1 at 20-80 mg L-1 ZnO nanowires. Radical trapping experiments demonstrated that hydroxyl radicals (OH) and superoxide radicals (O2-) predominantly contributed to the removal of cephalexin. With the addition of HCO3- (1-5 mM) or Suwannee River natural organic matter (SRNOM, 2-10 mg L-1), the k values were substantially decreased by a factor of 1.8-70 to 1.69 × 10-3-6.67 × 10-2 min-1, probably due to screening effect of HCO3- or SRNOM sorbed on ZnO nanowires and scavenging of free radicals by free HCO3- or SRNOM in solution. Combining product identification by mass spectrometry and molecular computation, cephalexin photodegradation pathways were identified, including hydroxylation, demethylation, decarboxylation, and dealkylation. Overall, the novel ZnO nanowires have the potential to be used for removing antibiotics from contaminated waters.


Assuntos
Antibacterianos/química , Cefalexina/química , Nanofios/química , Luz Solar , Poluentes Químicos da Água/química , Purificação da Água/métodos , Óxido de Zinco/química , Catálise , Cinética , Nanofios/efeitos da radiação , Fotólise , Rios , Óxido de Zinco/efeitos da radiação
7.
Sensors (Basel) ; 19(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248098

RESUMO

A conventional approach to making miniature or microscale gas chromatography (GC) components relies on silicon as a base material and MEMS fabrication as manufacturing processes. However, these devices often fail in medium-to-high temperature applications due to a lack of robust fluidic interconnects and a high-yield bonding process. This paper explores the feasibility of using metal additive manufacturing (AM), which is also known as metal 3D printing, as an alternative platform to produce small-scale microfluidic devices that can operate at a temperature higher than that which polymers can withstand. Binder jet printing (BJP), one of the metal AM processes, was utilized to make stainless steel (SS) preconcentrators (PCs) with submillimeter internal features. PCs can increase the concentration of gaseous analytes or serve as an inline injector for GC or gas sensor applications. Normally, parts printed by BJP are highly porous and thus often infiltrated with low melting point metal. By adding to SS316 powder sintering additives such as boron nitride (BN), which reduces the liquidus line temperature, we produce near full-density SS PCs at sintering temperatures much lower than the SS melting temperature, and importantly without any measurable shape distortion. Conversely, the SS PC without BN remains porous after the sintering process and unsuitable for fluidic applications. Since the SS parts, unlike Si, are compatible with machining, they can be modified to work with commercial compression fitting. The PC structures as well as the connection with the fitting are leak-free with relatively high operating pressures. A flexible membrane heater along with a resistance-temperature detector is integrated with the SS PCs for thermal desorption. The proof-of-concept experiment demonstrates that the SS PC can preconcentrate and inject 0.6% headspace toluene to enhance the detector's response.

8.
Nanomicro Lett ; 11(1): 11, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34137968

RESUMO

HIGHLIGHTS: ZnO nanowires were securely immobilized onto a floatable photocatalytic platform, which had a uniform diameter (55 ± 5 nm) and length (1.5 ± 0.3 µm).An additional 20% of the probe pollutant (methylene blue) was degraded by piezocatalysis-assisted photocatalytic degradation.The crude oil pollutant was decomposed up to 20% within 6 h. Photocatalytic degradation attracts considerable attention because it is a promising strategy to treat pollutants from industrial and agricultural wastes. In recent years, other than the development of efficient photocatalysts, much effort has been devoted to the design of reliable and inexpensive photocatalytic platforms that work in various environment conditions. Here, we describe a novel photocatalytic platform that is able to float and freely move atop water while performing photodegradation. Compared to common platforms, such as slurry reactors and immobilized photoreactors, the proposed platform is advantageous in terms of easy recycling and energy saving. Furthermore, the special configuration resulting from a two-step synthesis route, semi-embedded photocatalysts, addresses some of the remaining challenges, for instance, the contamination from the loose photocatalysts themselves. For the probe pollutant, methylene blue (MB), a reproducible and remarkable degradation activity of the platform, is observed and the effect of two primary factors, including surface area of the catalyst and mass transfer rate, is investigated. Besides, the piezo-photocatalysis effect, serving as an additional functionality, is confirmed to further improve the degradability of the platform, which offers an additional 20% of degraded MB. At last, the promising result of the degradation toward crude oil reveals the possibility of the platform to be used in gasoline pollution treatment.

9.
Langmuir ; 33(43): 12218-12226, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28962534

RESUMO

Self-assembly of colloidal nanospheres combined with various nanofabrication techniques produces an ever-increasing range of two-dimensional (2D) ordered nanostructures, although the pattern periodicity is typically bound to the original interparticle spacing. Deformable soft lithography using controlled deformation of elastomeric substrates and subsequent contact printing transfer offer a versatile method to systematically control the lattice spacing and arrangements of the 2D nanosphere array. However, the anisotropic nature of uniaxial and biaxial stretching as well as the strain limit of solvent swelling makes it difficult to create well-separated, ordered 2D nanosphere arrays with large-area hexagonal arrangements. In this paper, we report a simple, facile approach to fabricate such arrays of polystyrene nanospheres using a custom-made radial stretching apparatus. The maximum stretchability and spatial uniformity of the poly(dimethylsiloxane) (PDMS) elastomeric substrate is systematically investigated. A pitch increase as large as 213% is demonstrated using a single stretching-and-transfer process, which is at least 3 times larger than the maximum pitch increase achievable using a single swelling-and-transfer process. Unlike the colloidal arrays generated by the uniaxial and biaxial stretching, the isotropic expansion of radial stretching allows the hexagonal array to retain its original structure across the entire substrate. Upon radial strain applied to the PDMS sheet, the nanosphere array with modified pitch is transferred to a variety of target substrates, exhibiting different optical behaviors and serving as an etch mask or a template for molding.

10.
ACS Appl Mater Interfaces ; 9(11): 10019-10026, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28252279

RESUMO

As a new family member of two-dimensional layered materials, black phosphorus (BP) has attracted significant attention for chemical sensing applications due to its exceptional electrical, mechanical, and surface properties. However, producing air-stable BP sensors is extremely challenging because BP atomic layers degrade rapidly in ambient conditions. In this study, we explored the humidity sensing properties of BP field-effect transistors fully encapsulated by a 6 nm-thick Al2O3 encapsulation layer deposited by atomic layer deposition. The encapsulated BP sensors exhibited superior ambient stability with no noticeable degradation in sensing response after being stored in air for more than a week. Compared with the bare BP devices, the encapsulated ones offered long-term stability with a trade-off in slightly reduced sensitivity. Capacitance-voltage measurement results further reveal that instead of direct charge transfer, the electrostatic gating effect on BP flakes arising from the dipole moment of adsorbed water molecules is the basic mechanism governing the humidity sensing behavior of both bare and encapsulated BP sensors. This work demonstrates a viable approach for achieving air-stable BP-based humidity or chemical sensors for practical applications.

11.
Nanotechnology ; 28(14): 145302, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28281466

RESUMO

Tremendous progress has been made in synthesizing various types of one-dimensional (1D) nanostructures (NSs), such as nanotubes and nanowires, but some technical challenges still remain in the deterministic assembly of the solution-processed 1D NSs for device integration. In this work we investigate a scalable yet inexpensive nanomaterial assembly method, namely filtration-guided assembly (FGA), to place nanomaterials into desired locations as either an individual entity or ensembles, and form functional devices. FGA not only addresses the assembly challenges but also encompasses the notion of green nanomanufacturing, maximally utilizing nanomaterials and eliminating a waste stream of nanomaterials into the environment. FGA utilizes selective filtration of 1D NSs through the open windows on the nanoporous filter membrane whose surface is patterned by a polymer mask for guiding the 1D NS deposition. The modified soft-lithographic technique called blanket transfer (BT) is employed to create the various photoresist patterns of sub-10-micron resolution on the nanoporous filter membrane like mixed cellulose acetate. We use single-walled carbon nanotubes (SWCNTs) as a model 1D NS and demonstrate the fabrication of an array pattern of homogeneous 1D NS network films over an area of 20 cm2 within 10 min. The FGA-patterned SWCNT network films are transferred onto the substrate using the adhesive-based transfer technique, and show the highly uniform film thickness and resistance measurements across the entire substrate. Finally, the electrical performance of the back-gated transistors made from the FGA and transfer method of 95% pure SWCNTs is demonstrated.

12.
Nanotechnology ; 27(39): 395302, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27559986

RESUMO

Nanosphere lithography (NSL) has been widely used as an inexpensive method to create periodic arrays of metallic nanoparticles or nanodiscs on substrates. However, most nanodisc arrays derived from a NSL template are restricted to hexagonally-ordered triangular arrays because the metal layer is deposited onto the interstices between the nanospheres. Metallic nanodisc arrays with the same arrangement as the original nanosphere array have been rarely reported. Here, we demonstrate a facile, low-cost method to fabricate large-area hexagonal arrays of metallic nanodiscs using an NSL template combined with a two-step lift-off process. We employ a bi-layer of two dissimilar metals to create a re-entrant sidewall profile to undercut the sacrificial layer and facilitate the final lift-off of the metallic nanodiscs. The quality of the nanodisc pattern and the array periodicity is determined using statistical image analysis and compared to the original nanosphere array in terms of size distribution, surface smoothness, and array pitch. This nanodisc array is used as an etch mask to create a vertically-aligned Si nanowire array. This combined approach is a scalable and inexpensive fabrication method for creating relatively large-area, ordered arrays of various nanostructures.

13.
Sci Rep ; 6: 31336, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27546059

RESUMO

Ceramic-based microchemical systems (µCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional µCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic µCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.

14.
Nanoscale ; 7(9): 4124-33, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25666765

RESUMO

Metal-assisted chemical etching (MACE) offers an inexpensive, massively parallel fabrication process for producing silicon nanowires (SiNWs). These nanowires can possess a degree of porosity depending on etch conditions. Because the porosity is often spatially inhomogeneous, there is a need to better understand its nature if applications exploiting the porosity are to be pursued. Here, the resolution afforded by micro-Raman and micro-photoluminescence (PL) is used to elucidate the effects of porosity heterogeneity on the optical properties of individual SiNWs produced in large arrays with MACE, while also determining the spatial character of the heterogeneity. For highly porous SiNWs, there is a dramatic reduction in Raman signal and an increase in PL near the SiNW tips. PL spectra collected along the SiNW length exhibit peaks due to leaky mode resonances. Analysis of the PL resonance peaks, Raman spectrum line shape, SEM images, and EDS spectra indicate that the SiNWs possess both radial and axial heterogeneity wherein, from base to SiNW tip, the SiNWs comprise a shell of increasingly thick porous Si surrounding a tapering core of bulk Si. This work describes how structural porosity variation shapes SiNW optical properties, which will influence the design of new SiNW-based photonic devices and chemical/biological sensors.

15.
Nat Nanotechnol ; 7(12): 810-5, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23160316

RESUMO

Hydrogen sulphide is found in raw fuels such as natural gas and coal/biomass-derived syngas. It is poisonous to catalysts and corrosive to metals and therefore needs to be removed. This is often achieved using metal oxides as reactive adsorbents, but metal oxides perform poorly when subjected to repeated cycles of sulphidation and re-oxidation as a result of complex structural and chemical changes. Here, we show that Zn-Ti-O-based adsorbents with nanofibrous morphology can sustain their initial reactivity and sulphur removal capacity over multiple regeneration cycles. These nanostructured sorbents offer rapid reaction rates that overcome the gas-transport limitations of conventional pellet-based sorbents and allow all of the material to be used efficiently. Regeneration can be carried out at the same temperature as the sulphidation step because of the higher reactivity, which prevents sorbent deterioration and reduces energy use. The efficient regeneration of the adsorbent is also aided by structural features such as the growth of hierarchical nanostructures and preferential stabilization of a wurtzite phase in the sulphidation product.

16.
Nanotechnology ; 23(17): 175303, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22481526

RESUMO

We report fabrication and use of a flexible array of nano-apertures for photolithography on curved surfaces. The batch-fabricated apertures are formed of metal-coated silicone tips. The apertures are formed at the end of the silicone tips by either electrochemical etching of the metal or plasma etching of a protective mask followed by wet chemical etching. The apertures are as small as 250 nm on substrates larger than several millimeters. We demonstrate how the nano-aperture array can be used for nano-fabrication on flat and curved substrates, and show the subsequent fabrication steps to form large arrays of sub-micron aluminum dots or vertical silicon wires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...