Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4547, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806514

RESUMO

Efficient photovoltaic devices must be efficient light emitters to reach the thermodynamic efficiency limit. Here, we present a promising prospect of perovskite photovoltaics as bright emitters by harnessing the significant benefits of photon recycling, which can be practically achieved by suppressing interfacial quenching. We have achieved radiative and stable perovskite photovoltaic devices by the design of a multiple quantum well structure with long (∼3 nm) organic spacers with oleylammonium molecules at perovskite top interfaces. Our L-site exchange process (L: barrier molecule cation) enables the formation of stable interfacial structures with moderate conductivity despite the thick barriers. Compared to popular short (∼1 nm) Ls, our approach results in enhanced radiation efficiency through the recursive process of photon recycling. This leads to the realization of radiative perovskite photovoltaics with both high photovoltaic efficiency (in-lab 26.0%, certified to 25.2%) and electroluminescence quantum efficiency (19.7 % at peak, 17.8% at 1-sun equivalent condition). Furthermore, the stable crystallinity of oleylammonium-based quantum wells enables our devices to maintain high efficiencies for over 1000 h of operation and >2 years of storage.

2.
Sci Total Environ ; 934: 173296, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761950

RESUMO

This study explored the redox-mediated changes in a lead (Pb) contaminated soil (900 mg/kg) due to the addition of solar cell powder (SC) and investigated the impact of biochar derived from soft wood pellet (SWP) and oil seed rape straw (OSR) (5% w/w) on Pb immobilization using an automated biogeochemical microcosm system. The redox potential (Eh) of the untreated (control; SC) and biochar treated soils (SC + SWP and SC + OSR) ranged from -151 mV to +493 mV. In SC, the dissolved Pb concentrations were higher under oxic (up to 2.29 mg L-1) conditions than reducing (0.13 mg L-1) conditions. The addition of SWP and OSR to soil immobilized Pb, decreased dissolved concentration, which could be possibly due to the increase of pH, co-precipitation of Pb with FeMn (hydro)oxides and pyromorphite, and complexation with biochar surface functional groups. The ability and efficiency of OSR for Pb immobilization were higher than SWP, owing to the higher pH and density of surface functional groups of OSR than SWP. Biochar enhanced the relative abundance of Proteobacteria irrespective of Eh changes, while the relative abundance of Bacteroidota increased under oxidizing conditions. Overall, we found that both OSR and SWP immobilized Pb in solar panel waste contaminated soil under both oxidizing and reducing redox conditions which may mitigate the potential risk of Pb contamination.


Assuntos
Compostos de Cálcio , Carvão Vegetal , Chumbo , Oxirredução , Microbiologia do Solo , Poluentes do Solo , Chumbo/análise , Carvão Vegetal/química , Poluentes do Solo/análise , Compostos de Cálcio/química , Óxidos/química , Titânio/química , Solo/química , Bactérias
3.
Environ Res ; 219: 115066, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36528044

RESUMO

Metal halide perovskite solar cells (PSCs) have gained extensive attention in the field of solar photovoltaic technology over the past few years. Despite being a remarkable alternative to fossil fuels, solar cells may have detrimental effects on the environment and human health owing to the use of toxic materials during manufacturing. Although modern metal-halide-based PSCs are stable and have encapsulation to prevent the release of potentially toxic materials into the environment, their destruction due to strong winds, hail, snow, landslides, fires, or waste disposal can result in the exposure of these materials to the environment. This may lead to the contamination of soil and groundwater, and uptake of potentially toxic elements by plants, subsequently affecting humans and other living organisms via food chain contamination. Despite worldwide concern, the environmental and ecotoxicological impacts of metal-halide-based PSCs have not been comprehensively surveyed. This review summarizes and critically evaluates the current status of metal-halide-based PSC production and its impact on environmental sustainability, food security, and human health. Furthermore, safe handling and disposal methods for the waste generated from metal-halide-based PSCs are proposed, with a focus on recycling and reuse. Although some studies have suggested that the amount of lead released from metal halide PSCs is far below the maximum permissible levels in most soils, a clear conclusion cannot be reached until real contamination scenarios are assessed under field conditions. Precautions must be taken to minimize environmental contamination throughout the lifecycle of PSCs until nontoxic and similarly performing alternative solar photovoltaic products are developed.


Assuntos
Compostos de Cálcio , Metais , Humanos , Óxidos , Solo
4.
Nat Mater ; 21(12): 1388-1395, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396960

RESUMO

Fast diffusion of charge carriers is crucial for efficient charge collection in perovskite solar cells. While lateral transient photoluminescence microscopies have been popularly used to characterize charge diffusion in perovskites, there exists a discrepancy between low diffusion coefficients measured and near-unity charge collection efficiencies achieved in practical solar cells. Here, we reveal hidden microscopic dynamics in halide perovskites through four-dimensional (directions x, y and z and time t) tracking of charge carriers by characterizing out-of-plane diffusion of charge carriers. By combining this approach with confocal microscopy, we discover a strong local heterogeneity of vertical charge diffusivities in a three-dimensional perovskite film, arising from the difference between intragrain and intergrain diffusion. We visualize that most charge carriers are efficiently transported through the direct intragrain pathways or via indirect detours through nearby areas with fast diffusion. The observed anisotropy and heterogeneity of charge carrier diffusion in perovskites rationalize their high performance as shown in real devices. Our work also foresees that further control of polycrystal growth will enable solar cells with micrometres-thick perovskites to achieve both long optical path length and efficient charge collection simultaneously.


Assuntos
Compostos de Cálcio , Compostos Inorgânicos , Óxidos , Microscopia Confocal
5.
Adv Mater ; 32(51): e2002228, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32909335

RESUMO

Metal halide perovskite (MHP)-based tandem solar cells are a promising candidate for use in cost-effective and high-performance solar cells that can compete with fossil fuels. To understand the research trends for MHP-based tandem solar cells, a general introduction to single-junction and multiple-junction MHP solar cells and the configuration of tandem devices is provided, along with an overview of the recent progress regarding various MHP-based tandem cells, including MHP/crystalline silicon, MHP/CuInGaS, MHP/organic photovoltaic, MHP/quantum dot, and all-perovskite tandem cell. Future research directions for MHP-based tandem solar cells are also discussed.

6.
J Phys Chem Lett ; 10(21): 6545-6550, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31596090

RESUMO

Managing defects in SnO2 is critical for improving the power conversion efficiency (PCE) of halide perovskite-based solar cells. However, typically reported SnO2-based perovskite solar cells have inherent defects in the SnO2 layer, which lead to a lower PCE and hysteresis. Here, we report that a dual-coating approach for SnO2 with different annealing temperatures can simultaneously form a SnO2 layer with high crystallinity and uniform surface coverage. Along with these enhanced physical properties, the dual-coated SnO2 layer shows favorable band alignment with a mixed halide perovskite. After careful optimization of the dual-coating method, the average PCE of the perovskite solar cell based on the dual-coated SnO2 layer increases from 18.07 to 19.23% with a best-performing cell of 20.03%. Note that a facile two-step coating and annealing method can open new avenues to develop SnO2-based perovskite solar cells with stabilized and improved photovoltaic performances.

7.
ACS Appl Mater Interfaces ; 11(12): 11537-11544, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30838847

RESUMO

The development of a scalable fabrication technology for halide perovskite solar cells (HPSCs) is an important challenge to realize their commercialization. In particular, continuous solution-coating processes are needed to produce scalable large-area HPSCs. Herein, we report a single-solution bar-coating process that introduces an intermediate phase stage for large-area CH3NH3PbI3 films with full coverage and smooth morphology using N-cyclohexyl-2-pyrrolidone (CHP) as a mediator. In contrast to the conventional double-solution coating methods that use antisolvent treatments, the preformed uniform intermediate phase in the single-solution bar-coating process enables the formation of highly uniform perovskite films with a 10 cm × 10 cm area even without antisolvent treatment. The HPSCs fabricated using the resultant single-solution bar-coated perovskite films exhibit superior photovoltaic performance, narrower distribution, and smaller loss with a larger active area than devices fabricated using single-solution spin-coated perovskite films.

8.
ACS Appl Mater Interfaces ; 10(36): 30706-30715, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30113812

RESUMO

A highly-durable, highly-flexible transparent electrode (FTE) is developed by applying a composite made of a thin metal grid and a doped conducting polymer onto a colorless polyimide-coated NOA63 substrate. The proposed FTE exhibits a transparency of 90.7% at 550 nm including the substrate and a sheet resistance of 30.3 Ω/sq and can withstand both moderately high-temperature annealing (∼180 °C) and acidic solution (70 °C, pH 0.3) processes without performance degradation. The fabricated FTE yielded good mechanical stability under 10 000 cycles of bending deformations at a bending radius less than 1 mm without degradation of electrical conductivity. The high durability of the proposed FTE allows for the fabrication of flexible energy harvesting devices requiring harsh conditions, such as highly flexible perovskite solar cells (FPSCs) with a steady-state power conversion efficiency (PCE) of 12.7%. Notably, 93% of the original PCE is maintained after 2000 bending cycles at an extremely small bending radius of 1.5 mm. The FPSCs installed on curved surfaces of commercial devices drive them under various environments. The applicability of the proposed FTE is further confirmed via the fabrication of a flexible perovskite light-emitting diode. The proposed FTE demonstrates great potential for applications in the field of flexible optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...