Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nanomaterials (Basel) ; 13(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38133008

RESUMO

In the quest for efficient and cost-effective photovoltaic absorber materials beyond silicon, considerable attention has been directed toward exploring alternatives. One such material, zincblende-derived Cu2ZnSnS4 (CZTS), has shown promise due to its ideal band gap size and high absorption coefficient. However, challenges such as structural defects and secondary phase formation have hindered its development. In this study, we examine the potential of another compound, Cu2ZnSnO4 (CZTO), with a similar composition to CZTS as a promising alternative. Employing ab initio density function theory (DFT) calculations in combination with an evolutionary structure prediction algorithm, we identify that the crystalline phase of delafossite structure is the most stable among the 900 (meta)stable CZTO. Its thermodynamic stability at room temperature is also confirmed by the molecular dynamics study. Excitingly, this new phase of CZTO displays a direct band gap where the dipole-allowed transition occurs, making it a strong candidate for efficient light absorptions. Furthermore, the estimation of spectroscopic limited maximum efficiency (SLME) directly demonstrates the high potential of delafossite-CZTO as a photovoltaic absorber. Our numerical results suggest that delafossite-CZTO holds promise for future photovoltaic applications.

3.
Adv Mater ; 35(32): e2302906, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37309684

RESUMO

Atomic-scale engineering typically involves bottom-up approaches, leveraging parameters such as temperature, partial pressures, and chemical affinity to promote spontaneous arrangement of atoms. These parameters are applied globally, resulting in atomic-scale features scattered probabilistically throughout the material. In a top-down approach, different regions of the material are exposed to different parameters, resulting in structural changes varying on the scale of the resolution. In this work, the application of global and local parameters is combined in an aberration-corrected scanning transmission electron microscope (STEM) to demonstrate atomic-scale precision patterning of atoms in twisted bilayer graphene. The focused electron beam is used to define attachment points for foreign atoms through the controlled ejection of carbon atoms from the graphene lattice. The sample environment is staged with nearby source materials such that the sample temperature can induce migration of the source atoms across the sample surface. Under these conditions, the electron-beam (top-down) enables carbon atoms in the graphene to be replaced spontaneously by diffusing adatoms (bottom-up). Using image-based feedback control, arbitrary patterns of atoms and atom clusters are attached to the twisted bilayer graphene with limited human interaction. The role of substrate temperature on adatom and vacancy diffusion is explored by first-principles simulations.

4.
Sci Rep ; 12(1): 3191, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210543

RESUMO

A liquid-gas foam, here called bubble array, is a ubiquitous phenomenon widely observed in daily lives, food, pharmaceutical and cosmetic products, and even bio- and nano-technologies. This intriguing phenomenon has been often studied in a well-controlled environment in laboratories, computations, or analytical models. Still, real-world bubble undergoes complex nonlinear transitions from wet to dry conditions, which are hard to describe by unified rules as a whole. Here, we show that a few early-phase snapshots of bubble array can be learned by a glass-box physics rule learner (GPRL) leading to prediction rules of future bubble array. Unlike the black-box machine learning approach, the glass-box approach seeks to unravel expressive rules of the phenomenon that can evolve. Without known principles, GPRL identifies plausible rules of bubble prediction with an elongated bubble array data that transitions from wet to dry states. Then, the best-so-far GPRL-identified rule is applied to an independent circular bubble array, demonstrating the potential generality of the rule. We explain how GPRL uses the spatio-temporal convolved information of early bubbles to mimic the scientist's perception of bubble sides, shapes, and inter-bubble influences. This research will help combine foam physics and machine learning to better understand and control bubbles.

5.
Proc Natl Acad Sci U S A ; 116(44): 22014-22019, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611413

RESUMO

T cells can be controllably stimulated through antigen-specific or nonspecific protocols. Accompanying functional hallmarks of T cell activation can include cytoskeletal reorganization, cell size increase, and cytokine secretion. Photon-induced near-field electron microscopy (PINEM) is used to image and quantify evanescent electric fields at the surface of T cells as a function of various stimulation conditions. While PINEM signal strength scales with multiple of the biophysical changes associated with T cell functional activation, it mostly strongly correlates with antigen-engagement of the T cell receptors, even under conditions that do not lead to functional T cell activation. PINEM image analysis suggests that a stimulation-induced reorganization of T cell surface structure, especially over length scales of a few hundred nanometers, is the dominant contributor to these PINEM signal changes. These experiments reveal that PINEM can provide a sensitive label-free probe of nanoscale cellular surface structures.


Assuntos
Ativação Linfocitária , Linfócitos T/ultraestrutura , Humanos , Células Jurkat , Microscopia Eletrônica/métodos , Propriedades de Superfície
6.
Nano Lett ; 14(6): 2982-7, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24742005

RESUMO

We measure the quality factor Q of electrically driven few-layer graphene drumhead resonators, providing an experimental demonstration that Q ∼ 1/T, where T is the temperature. We develop a model that includes intermodal coupling and tensioned graphene resonators. Because the resonators are atomically thin, out-of-plane fluctuations are large. As a result, Q is mainly determined by stochastic frequency broadening rather than frictional damping, in analogy to nuclear magnetic resonance. This model is in good agreement with experiment. Additionally, at larger drives the resonance line width is enhanced by nonlinear damping, in qualitative agreement with recent theory of damping by radiation of in-plane phonons. Parametric amplification produced by periodic thermal expansion from the ac drive voltage yields an anomalously large line width at the largest drives. Our results contribute toward a general framework for understanding the mechanisms of dissipation and spectral line broadening in atomically thin membrane resonators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...