Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(49): 17020-17030, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36414244

RESUMO

A novel electrochemical sensor was constructed based on an enzyme-mediated physiological reaction between neurotransmitter serotonin per-oxidation to reconstruct dual-molecule 4,4'-dimeric-serotonin self-assembled derivative, and the potential biomedical application of the multi-functional nano-platform was explored. Serotonin accelerated the catalytic activity to form a dual molecule at the C4 position and created phenolic radical-radical coupling intermediates in a peroxidase reaction system. Here, 4,4' dimeric-serotonin possessed the capability to recognize intermolecular interactions between amine groups. The excellent quenching effects on top of the gold surface electrode system archive logically inexpensive and straightforward analytical demands. In biochemical sensing analysis, the serotonin dimerization concept demonstrated a robust, low-cost, and highly sensitive immunosensor, presenting the potential of quantifying serotonin at point-of-care (POC) testing. The high-specificity serotonin electrochemical sensor had a limit of detection (LOD) of 0.9 nM in phosphate buffer and 1.4 nM in human serum samples and a linear range of 10 to 400 with a sensitivity of 2.0 × 10-2 nM. The bivalent 4,4'-dimer-serotonin interaction strategy provides a promising platform for serotonin biosensing with high specificity, sensitivity, selectivity, stability, and reproducibility. The self-assembling gold surface electrochemical system presents a new analytical method for explicitly detecting tiny neurotransmitter-responsive serotonin neuromolecules.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Serotonina/análise , Reprodutibilidade dos Testes , Imunoensaio/métodos , Ouro/química , Eletrodos , Limite de Detecção , Polímeros , Neurotransmissores/análise , Nanopartículas Metálicas/química
2.
Bioelectrochemistry ; 144: 108046, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35030457

RESUMO

We have developed a powerful biosensing strategy for immobilizing histidine-tagged (His-Tag)-oriented recombinant nano-protein immobilization on a chemically modified glassy carbon electrode (GCE) surfaces via (S)-N-(5-amino-1-carboxypentyl)iminodiacetic acid (ANTA) acting as a chelating Ni2+ centered interaction. Here, we introduce a label-free electro-sensor to quantify cortisol levels in saliva samples for point-of-care testing (POCT). The high specificity of the chemically modified GCE was established by genetically bio-engineered metal-binding sites on the selected recombinant apoferritin (R-AFTN) nano-protein to impart functionality to its surface and by coating the carbon surface with the self-assembled monolayers of 4-aminobenzoic acid (4-ABA) attached to ANTA groups complexed with Ni2+ transition metal ions. Despite the variety of conventional assays available to monitor cortisol levels, they require bulky exterior outfits, which hinders use in the healthcare systems. Therefore, we performed a rapid, easy-to-implement, and low-cost quantitative electro-sensor to enable the real-time detection of cortisol levels in saliva samples. As a result, the cortisol electro-sensor fabricated with high specificity utilizing a GCE could measure cortisol levels with a detection limit of 0.95 ng/ml and sensitivity of 7.91 µA/(ng/mL), which is a practical approach in human saliva. Thus, protein nanoprobe-based cortisol biosensing showed high sensitivity and selectivity for the direct electro-sensing of cortisol for POCT.


Assuntos
Hidrocortisona
3.
Sensors (Basel) ; 21(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34300644

RESUMO

In this report, we present an enzyme deposited Au electrode for an electrochemical measurement of acetylacetic acid (AcAc) in urine. The electrode has an immobilized layer of a mixture of D-ß-hydroxybutyrate dehydrogenase (HBDH) and nicotinamide adenine dinucleotide (NADH) as sensing material to investigate its electroanalytical properties by means of cyclic voltammetry (CV). The modified electrodes are used for the detection of AcAc and present a linear current increase when the AcAc concentration increases. The electrode presents a limit of detection (LOD) of 6.25 mg/dL in the range of 6.25-100 mg/dL for investigation of clinical relevance. Finally, the electrode was evaluated using 20 patient samples. The measured results of urine ketone by the developed electrode were compared with the clinical results from a commercial kit, and the analysis showed good agreement. The proposed electrode was demonstrated to be a very promising platform as a miniaturized electrochemical analyzer for point-of-care monitoring of the critical biochemical parameters such as urine ketone.


Assuntos
Cetoacidose Diabética , Corpos Cetônicos , Cetoacidose Diabética/diagnóstico , Técnicas Eletroquímicas , Eletrodos , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...