Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 630(Pt A): 212-222, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242881

RESUMO

Ligand-assisted re-precipitation (LARP) is one of the most practicing techniques for synthesizing colloidal nanocrystals (NCs). But due to its fast reaction kinetics, it offers limited synthesis control. In the present study, we report a novel, precursor silanization-based room temperature technique unveiling slow crystallization of Cs4PbBr6/CsPbBr3 dual-phase nanocrystals (DPNCs) protected with a dense silica cloud-like matrix. Unlike conventional LARP, we can observe the tuneable optical bandgap of the DPNCs as a function of reaction time because of the slow reaction kinetics. The as-synthesized DPNCs exhibit a high photoluminescence quantum yield (PLQY) of 76% with ultrahigh stability while retaining âˆ¼ 100% of their initial PLQY in an ambient environment with a relative humidity of 55% for more than 1 year. DPNCs demonstrates ambient photostability of 560 h, and water stability of 25 days. This interesting precursor silanization technique developed here can be extended for the synthesis of other nanomaterials.


Assuntos
Nanopartículas , Dióxido de Silício , Compostos de Cálcio , Óxidos
2.
Dalton Trans ; 51(38): 14535-14544, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36073276

RESUMO

In everyday life, superior lithium-ion batteries (LIBs), with fast charging ability, have become valuable assets. The LIB performance of an anode composite copper cobalt tin sulphide (Cu2CoSnS4; CCTS) electrode, which was fabricated using a simple and easy hydrothermal method, was investigated. The electrochemical charge storage performance of the CCTS anode demonstrated sustainability, high-rate capability and efficiency. The CCTS anode exhibited a first discharge capacity of 914.5 mA h g-1 and an average specific capacity of 198.7 mA h g-1 in consecutive cycles at a current density of 0.1 A g-1. It had a capacity retention of ∼62.0% and a coulombic efficiency of more than 83% after over 100 cycles, demonstrating its excellent cycling performance and reversibility. It can be an alternative anode to other established electrode materials for real battery applications.

3.
Dalton Trans ; 51(23): 8994-9006, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622073

RESUMO

Green hydrogen derived from the water-electrolysis route is emerging as a game changer for achieving global carbon neutrality. Economically producing hydrogen through water electrolysis, however, requires the development of low-cost and highly efficient electrocatalysts via scalable synthetic strategies. Herein, this work reports a simple and scalable immersion synthetic strategy to deposit reduced graphene oxide (rGO) nanosheets integrated with Ni-Fe-based hydroxide nanocatalysts on nickel foam (NF) at room temperature. As a result of synergetic interactions among the hydroxides, rGO and NF, enhanced catalytic sites with improved charge transport between the electrode and electrolyte were perceived, resulting in significantly enhanced oxygen evolution reaction (OER) activity with low overpotentials of 270 and 320 mV at 100 and 500 mA cm-2, respectively, in a 1.0 M KOH aqueous electrolyte. This performance is superior to those of the hydroxide-based electrode without incorporating rGO and the IrO2-benchmark electrode. Furthermore, when the conventional OER is substituted with urea decomposition (UOR) as a proxy anodic reaction, the electrolyzer achieves 100 and 500 mA cm-2 at a lower potential by 150 and 120 mV, respectively than the OER counterpart without influencing the hydrogen evolution reaction (HER) activity at the cathode. Notably, the rGO-incorporated electrode delivers a spectacularly high UOR current density of 1600 mA cm-2 at 1.53 V vs. RHE, indicating the decomposition of urea at an outstandingly high rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...