Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(18): 17090-17099, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31021602

RESUMO

A novel In-Sn-Bi solder with a low electrical resistivity of 14.3 × 10-6 Ω cm and a melting temperature of 99.3 °C was produced for use in adhesive joining on a flexible poly(ethylene terephthalate) substrate. We determined that the fine microstructure of the In-based solder (which had an average phase size of 62.2 nm) strongly influenced its superplasticity and toughness at diffusive temperatures of 55-85 °C because the late-forming BiIn intermetallic compound (IMC) suppressed the growth of two other IMCs, In3Sn and In0.2Sn0.8, which formed earlier in the soldering process. Thus, an elongation of 858.3% and toughness of 36.0 MPa were obtained at a temperature of 85 °C and a strain rate of 0.0020 s-1. However, due to phase boundary fracturing, the phase-refined solder exhibited a slightly more brittle nature (with an elongation of 74.3%) at room temperature compared with a standard In-Sn solder consisting only of the In3Sn and In0.2Sn0.8 IMCs, which had a slightly larger phase size of 84.9 nm and higher ductility (with an elongation of 80.7%). In terms of superplastic deformation, the conventional fracture system based on the Hall-Petch effect transformed into phase boundary sliding at the solder operating temperature, significantly enhancing ductility.

2.
ACS Appl Mater Interfaces ; 10(6): 5723-5730, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29355300

RESUMO

Here, we present a simple yet highly efficient method to enhance the output performance of a piezoelectric device containing electrospun nanofiber mats. Multiple nanofiber mats were assembled together to harness larger piezoelectric sources in the as-spun fibers, thereby providing enhanced voltage and current outputs compared to those of a single-mat device. In addition to the multilayer assembly, microbead-based electrodes were integrated with the nanofiber mats to deliver a complexed compression and tension force excitation to the piezoelectric layers. A vacuum-packing process was performed to attain a tight and well-organized assembly of the device components even though the total thickness was several millimeters. The integrated piezoelectric device exhibited a maximum voltage and current of 10.4 V and 2.3 µA, respectively. Furthermore, the robust integrity of the device components could provide high-precision sensitivity to perceive small pressures down to approximately 100 Pa while retaining a linear input-output relationship.

3.
ACS Appl Mater Interfaces ; 8(37): 24773-81, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27571166

RESUMO

Here, we developed highly sensitive piezoelectric sensors in which flexible membrane components were harmoniously integrated. An electrospun nanofiber mat of poly(vinylidenefluoride-co-trifluoroethylene) was sandwiched between two elastomer sheets with sputtered electrodes as an active layer for piezoelectricity. The developed sensory system was ultrasensitive in response to various microscale mechanical stimuli and able to perceive the corresponding deformation at a resolution of 1 µm. Owing to the highly flexible and resilient properties of the components, the durability of the device was sufficiently stable so that the measuring performance could still be effective under harsh conditions of repetitive stretching and folding. When employing spin-coated thin elastomer films, the thickness of the entire sandwich architecture could be less than 100 µm, thereby achieving sufficient compliance of mechanical deformation to accommodate artery-skin motion of the heart pulse. These skin-attachable film- or sheet-type mechanical sensors with high flexibility are expected to enable various applications in the field of wearable devices, medical monitoring systems, and electronic skin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...